1
|
Çatli G, Acar S, Cingöz G, Rasulova K, Yarim AK, Uzun H, Küme T, Kızıldağ S, Dündar BN, Abacı A. Oxytocin receptor gene polymorphism and low serum oxytocin level are associated with hyperphagia and obesity in adolescents. Int J Obes (Lond) 2021; 45:2064-2073. [PMID: 34091593 DOI: 10.1038/s41366-021-00876-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND/OBJECTIVES In recent years, oxytocin (OXT) and polymorphisms in the oxytocin receptor (OXTR) gene have been reported to play roles in obesity pathogenesis. However, there was no study evaluating OXTR gene variants in childhood obesity. The aim of the study was to investigate the relation of OXTR gene polymorphisms and serum OXT levels with metabolic and anthropometric parameters in obese and healthy adolescents. SUBJECTS/METHODS The study was a multi-centered case-control study, which was conducted on obese and healthy adolescents aged between 12 and 17 years. Serum OXT and leptin levels were measured, and OXTR gene variants were studied by qPCR (rs53576) and RFLP (rs2254298) methods. RESULTS A total of 250 obese and 250 healthy adolescents were included in this study. In the obese group, serum OXT level was lower and leptin level was higher than the control group. In the obese group, frequencies of homozygous mutant (G/G) and heterozygous (A/G) genotypes for rs53576 polymorphism were higher than the control group. Homozygous mutant(G/G) and heterozygous (A/G) genotypes for rs53576 polymorphism were found to increase the risk of obesity compared to the wild type (A/A) genotype [OR = 6.05 and OR = 3.06; p < 0.001, respectively]. In patients with homozygous mutant (G/G) and heterozygous (A/G) genotype for rs53576 polymorphism, serum OXT levels were lower than the wild type (A/A) genotype. In the obese group, hyperphagia score was higher than the control group and correlated negatively with serum OXT level. CONCLUSIONS This study revealed that low serum OXT level, which is associated with hyperphagia may be an underlying cause for obesity in adolescents. For rs53576 polymorphism of the OXTR gene, obesity risk is higher in patients with homozygous mutant(G/G) and heterozygous(A/G)genotypes.
Collapse
Affiliation(s)
- Gönül Çatli
- Department of Pediatric Endocrinology, Izmir KatipÇelebi University, Faculty of Medicine, İzmir, Turkey.
| | - Sezer Acar
- Department of Pediatric Endocrinology, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Gülten Cingöz
- Department of Pediatrics, Sağlik Bilimleri University, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Khayala Rasulova
- Department of Medical Biology and Genetics, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Ayça Kanat Yarim
- Department of Medical Biology and Genetics, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Hamide Uzun
- Department of Nutrition and Dietetics, Sağlik Bilimleri University, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Tuncay Küme
- Department of Biochemistry, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Sefa Kızıldağ
- Department of Medical Biology and Genetics, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Bumin Nuri Dündar
- Department of Pediatric Endocrinology, Izmir KatipÇelebi University, Faculty of Medicine, İzmir, Turkey
| | - Ayhan Abacı
- Department of Pediatric Endocrinology, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
2
|
He M, Huang XF, Gao G, Zhou T, Li W, Hu J, Chen J, Li J, Sun T. Olanzapine-induced endoplasmic reticulum stress and inflammation in the hypothalamus were inhibited by an ER stress inhibitor 4-phenylbutyrate. Psychoneuroendocrinology 2019; 104:286-299. [PMID: 30927713 DOI: 10.1016/j.psyneuen.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
Abstract
Antipsychotics are the most important treatment for schizophrenia. However, antipsychotics, particularly olanzapine and clozapine, are associated with severe weight gain/obesity side-effects. Although numerous studies have been carried out to identify the exact mechanisms of antipsychotic-induced weight gain, it is still important to consider other pathways. Endoplasmic reticulum (ER) stress signaling and its associated inflammation pathway is one of the most important pathways involved in regulation of energy balance. In the present study, we examined the role of hypothalamic protein kinase R like endoplasmic reticulum kinase- eukaryotic initiation factor 2α (PERK-eIF2α) signaling and the inflammatory IkappaB kinase β- nuclear factor kappa B (IKKβ-NFκB) signaling pathway in olanzapine-induced weight gain in female rats. In this study, we found that olanzapine significantly activated PERK-eIF2α and IKKβ-NFκB signaling in SH-SY5Y cells in a dose-dependent manner. Olanzapine treatment for 8 days in rats was associated with activated PERK-eIF2α signaling and IKKβ-NFκB signaling in the hypothalamus, accompanied by increased food intake and weight gain. Co-treatment with an ER stress inhibitor, 4-phenylbutyrate (4-PBA), decreased olanzapine-induced food intake and weight gain in a dose- and time-dependent manner. Moreover, 4-PBA dose-dependently inhibited olanzapine-induced activated PERK-eIF2α and IKKβ-NFκB signaling in the hypothalamus. These results suggested that hypothalamic ER stress may play an important role in antipsychotic-induced weight gain.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China
| | - Ting Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Wenting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jinqi Hu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jia Chen
- Wuhan Seventh Hospital, Wuhan, Hubei, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response. Neurotox Res 2018; 36:239-256. [PMID: 30259418 DOI: 10.1007/s12640-018-9962-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
Neuroendocrine and immune signaling pathways are activated following insults such as stress, injury, and infection, in a systemic response aimed at restoring homeostasis. Mitochondrial metabolism and function have been implicated in the control of immune responses. Commonly studied along with mitochondrial function, reactive oxygen species (ROS) are closely linked to cellular inflammatory responses. It is also accepted that cells experiencing mitochondrial or endoplasmic reticulum (ER) stress induce response pathways in order to cope with protein-folding dysregulation, in homeostatic responses referred to as the unfolded protein responses (UPRs). Recent reports indicate that the UPRs may play an important role in immune responses. Notably, the homeostasis-regulating hormones oxytocin (OXT) and vasopressin (AVP) are also associated with the regulation of inflammatory responses and immune function. Intriguingly, OXT and AVP have been linked with ER unfolded protein responses (UPRER), and can impact ROS production and mitochondrial function. Here, we will review the evidence for interactions between these various factors and how these neuropeptides might influence mitochondrial processes.
Collapse
|
4
|
Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; 30:e12633. [PMID: 29998612 DOI: 10.1111/jne.12633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/08/2018] [Indexed: 01/06/2023]
Abstract
Vasopressin (AVP) and oxytocin (OT) are essential for the control of extracellular fluid osmolality and volume. Secretion of these hormones is modulated by several mechanisms, including NMDA and AMPA L-glutamate receptors in magnocellular cells of paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei. Thus, to better understand the participation of L-glutamate on the neuroendocrine control of AVP and OT, this work evaluated the effects of intracerebroventricular (icv) NMDA and AMPA receptor antagonists on plasma AVP and OT levels induced by extracellular volume expansion (EVE). Cannulated rats received icv NMDA (AP5) and AMPA (NBQX) antagonists in 10 and 30nmol/5μl/rat doses and were subjected to either isotonic (0.15 M NaCl, 2ml/100g) or hypertonic (0.30 M NaCl, 2ml/100g) EVE. Blood samples were collected for plasma AVP and OT determination. Isotonic EVE did not change plasma AVP and OT levels, but hypertonic EVE increased both AVP and OT plasma levels. AP5 reduced plasma AVP, but it did not change the OT level induced by hypertonic EVE. On the other hand, NBQX reduced plasma OT, but did not alter the AVP plasma level. Our data shows that L-glutamate controls the secretion of neurohypophyseal hormones through the NMDA receptor for AVP release, and through the AMPA receptor for OT release, both in response to hypertonic EVE. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tatiane Vilhena-Franco
- Department of Physiology Ribeirão, Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Evandro Valentim-Lima
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Lucila L K Elias
- Department of Physiology Ribeirão, Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology Ribeirão, Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - André S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
He L, Li H, Huang N, Zhou X, Tian J, Li T, Wu J, Tian Y, Yin Y, Yao K. Alpha-ketoglutarate suppresses the NF-κB-mediated inflammatory pathway and enhances the PXR-regulated detoxification pathway. Oncotarget 2017; 8:102974-102988. [PMID: 29262538 PMCID: PMC5732704 DOI: 10.18632/oncotarget.16875] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/17/2017] [Indexed: 01/18/2023] Open
Abstract
Alpha-ketoglutarate (AKG) is a critical nutritional factor in the maintenance of intestinal homeostasis. However, the relative mechanism of AKG has not been well understood. It was recently shown that the interaction between nuclear factor kappa B (NF-κB)-mediated inflammatory pathway and pregnane X receptor (PXR)-regulated detoxification pathway is a check and balance mechanism for keeping the homeostatic state of the intestine, preventing the onset of intestinal inflammation which may lead to cancer. In the current study we used lipopolysaccharide (LPS)-challenged piglet and intestinal porcine epithelial cells-J2 models to investigate the effects of dietary AKG supplementation on the intestinal immune system and PXR regulated target expression. We found that LPS induced significant activation of the NF-κB-mediated inflammatory pathway with concomitant impairment of intestinal nutrient absorption. AKG administration increased intracellular AKG and its metabolite concentrations and enhanced the mRNA expression of alpha-ketoglutarate dehydrogenase in vivo and in vitro. Thus dietary AKG supplementation reversed the adverse effects induced by LPS. We also found a strong inhibitory effects on the NF-κB-mediated inflammatory pathway, especially, in the AKG-treated intestinal tissues, LPS-induced NF-κB phosphorylation was inhibited and TNF-α was suppressed. Interestingly, AKG has potent effects in regulating the PXR and its downstream targets such as CYP3As and CYP2Bs in vivo and in vitro, although AKG is not a known PXR ligand. One potential mechanism for the up-regulation of the PXR pathway is through the down-regulation of NF-κB pathway which in turn de-represses the PXR-regulated target expression. Taken together, our results suggest that AKG improves intestinal immune system through modulating the interaction between PXR and NF-κB. Our findings have important implications for the prevention and treatment of intestinal inflammatory diseases in neonates.
Collapse
Affiliation(s)
- Liuqin He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Huairou, Beijing 10008, China
| | - Huan Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Niu Huang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Junquan Tian
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Huairou, Beijing 10008, China
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Hunan, Changsha 410128, China
| | - Jing Wu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Hunan, Changsha 410128, China
| | - Kang Yao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Hunan, Changsha 410128, China
| |
Collapse
|
6
|
Elfers CT, Roth CL. Robust Reductions of Excess Weight and Hyperphagia by Beloranib in Rat Models of Genetic and Hypothalamic Obesity. Endocrinology 2017; 158:41-55. [PMID: 27849360 DOI: 10.1210/en.2016-1665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/15/2016] [Indexed: 02/08/2023]
Abstract
Hypothalamic lesions or deficient melanocortin (MC) signaling via MC4 receptor (MC4r) mutations often lead to hyperphagia and severe treatment-resistant obesity. We tested the methionine aminopeptidase 2-inhibitor beloranib (ZGN-440) in 2 male rat models of obesity, one modeling hypothalamic obesity with a combined medial hypothalamic lesion (CMHL) and the other modeling a monogenic form of obesity with MC4r mutations (MC4r knockout [MC4rKO]). In CMHL rats (age 3 months), postsurgery excess weight gain was significantly inhibited (ZGN-440, 0.2 ± 0.7 g/d; vehicle, 3.8 ± 0.6 g/d; P < 0.001) during 12 days of ZGN-440 treatment (0.1 mg/kg daily subcutaneously) together with a 30% reduction of daily food intake vs vehicle injection. In addition, ZGN-440 treatment improved glucose tolerance and reduced plasma insulin, and circulating levels of α-melanocyte stimulating hormone were increased. Serum lipid levels did not differ significantly in ZGN-440-treated vs vehicle-treated rats. Similar results were found in MC4rKO rats: ZGN-440 treatment (14-21 d) was associated with significant reductions of body weight gain (MC4rKO, -1.7 ± 0.6 vs 2.8 ± 0.4 g/d; lean wild-type controls, -0.7 ± 0.2 vs 1.7 ± 0.7 g/d; ZGN-440 vs vehicle, respectively), reduction of food intake (MC4rKO, -28%; lean controls, -7.5%), and insulin resistance, whereas circulating levels of interleukin-1β did not change. In both obesity models, body temperature and locomotor activity were not affected by ZGN-440 treatment. In conclusion, the robust reduction of body weight in response to ZGN-440 observed in rats with severe obesity is related to a strong reduction of food intake that is likely related to changes in the central regulation of feeding.
Collapse
Affiliation(s)
- Clinton T Elfers
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101; and
| | - Christian L Roth
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101; and
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, Washington 98105
| |
Collapse
|