1
|
Long Z, Bing T, Zhang X, Sheng J, Zu S, Li W, Liu X, Zhang N, Shangguan D. Structural Optimization and Interaction Study of a DNA Aptamer to L1 Cell Adhesion Molecule. Int J Mol Sci 2023; 24:ijms24108612. [PMID: 37239955 DOI: 10.3390/ijms24108612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The L1 cell adhesion molecule (L1CAM) plays important roles in the development and plasticity of the nervous system as well as in tumor formation, progression, and metastasis. New ligands are necessary tools for biomedical research and the detection of L1CAM. Here, DNA aptamer yly12 against L1CAM was optimized to have much stronger binding affinity (10-24 fold) at room temperature and 37 °C via sequence mutation and extension. This interaction study revealed that the optimized aptamers (yly20 and yly21) adopted a hairpin structure containing two loops and two stems. The key nucleotides for aptamer binding mainly located in loop I and its adjacent area. Stem I mainly played the role of stabilizing the binding structure. The yly-series aptamers were demonstrated to bind the Ig6 domain of L1CAM. This study reveals a detailed molecular mechanism for the interaction between yly-series aptamers and L1CAM and provides guidance for drug development and detection probe design against L1CAM.
Collapse
Affiliation(s)
- Zhenhao Long
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiangru Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| | - Weiwei Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| |
Collapse
|
2
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Xia W, Hu C. Progress in Research on Tumor Metastasis Inhibitors. Curr Med Chem 2020; 27:5758-5772. [PMID: 31560282 DOI: 10.2174/0929867326666190927120847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023]
Abstract
Tumor metastasis is a significant cause of malignant cancer-related death. Therefore, inhibiting tumor metastasis is an effective means of treating malignant tumors. Increasing our understanding of the molecular mechanisms that govern tumor metastasis can reveal new anti-cancer targets. This article will discuss the breakthroughs in this area and the corresponding recent developments in anti-cancer drug discovery.
Collapse
Affiliation(s)
- Weiqi Xia
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Chunqi Hu
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
4
|
Wu Q, Zhang B, Sun Y, Xu R, Hu X, Ren S, Ma Q, Chen C, Shu J, Qi F, He T, Wang W, Wang Z. Identification of novel biomarkers and candidate small molecule drugs in non-small-cell lung cancer by integrated microarray analysis. Onco Targets Ther 2019; 12:3545-3563. [PMID: 31190860 PMCID: PMC6526173 DOI: 10.2147/ott.s198621] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer morbidity and mortality worldwide. In the present study, we identified novel biomarkers associated with the pathogenesis of NSCLC aiming to provide new diagnostic and therapeutic approaches for NSCLC. Methods: The microarray datasets of GSE18842, GSE30219, GSE31210, GSE32863 and GSE40791 from Gene Expression Omnibus database were downloaded. The differential expressed genes (DEGs) between NSCLC and normal samples were identified by limma package. The construction of protein–protein interaction (PPI) network, module analysis and enrichment analysis were performed using bioinformatics tools. The expression and prognostic values of hub genes were validated by GEPIA database and real-time quantitative PCR. Based on these DEGs, the candidate small molecules for NSCLC were identified by the CMap database. Results: A total of 408 overlapping DEGs including 109 up-regulated and 296 down-regulated genes were identified; 300 nodes and 1283 interactions were obtained from the PPI network. The most significant biological process and pathway enrichment of DEGs were response to wounding and cell adhesion molecules, respectively. Six DEGs (PTTG1, TYMS, ECT2, COL1A1, SPP1 and CDCA5) which significantly up-regulated in NSCLC tissues, were selected as hub genes according to the results of module analysis. The GEPIA database further confirmed that patients with higher expression levels of these hub genes experienced a shorter overall survival. Additionally, CMap predicted the 20 most significant small molecules as potential therapeutic drugs for NSCLC. DL-thiorphan was the most promising small molecule to reverse the NSCLC gene expression. Conclusions: Based on the gene expression profiles of 696 NSCLC samples and 237 normal samples, we first revealed that PTTG1, TYMS, ECT2, COL1A1, SPP1 and CDCA5 could act as the promising novel diagnostic and therapeutic targets for NSCLC. Our work will contribute to clarifying the molecular mechanisms of NSCLC initiation and progression.
Collapse
Affiliation(s)
- Qiong Wu
- Medical School of Nantong University, Nantong 226001, People's Republic of China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Bo Zhang
- Medical School of Nantong University, Nantong 226001, People's Republic of China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Yidan Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Ran Xu
- Medical School of Nantong University, Nantong 226001, People's Republic of China
| | - Xinyi Hu
- Department of Biochemistry & Molecular Biology, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shiqi Ren
- Department of Biochemistry & Molecular Biology, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Qianqian Ma
- Emergency Office, Wuxi Center for Disease Control and Prevention, Wuxi 214023, People's Republic of China
| | - Chen Chen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian Shu
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou 215400, People's Republic of China
| | - Fuwei Qi
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou 215400, People's Republic of China
| | - Ting He
- The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou 215400, People's Republic of China
| | - Wei Wang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Ziheng Wang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| |
Collapse
|
5
|
Angiolini F, Belloni E, Giordano M, Campioni M, Forneris F, Paronetto MP, Lupia M, Brandas C, Pradella D, Di Matteo A, Giampietro C, Jodice G, Luise C, Bertalot G, Freddi S, Malinverno M, Irimia M, Moulton JD, Summerton J, Chiapparino A, Ghilardi C, Giavazzi R, Nyqvist D, Gabellini D, Dejana E, Cavallaro U, Ghigna C. A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing. eLife 2019; 8:44305. [PMID: 30829570 PMCID: PMC6398979 DOI: 10.7554/elife.44305] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
The biological players involved in angiogenesis are only partially defined. Here, we report that endothelial cells (ECs) express a novel isoform of the cell-surface adhesion molecule L1CAM, termed L1-ΔTM. The splicing factor NOVA2, which binds directly to L1CAM pre-mRNA, is necessary and sufficient for the skipping of L1CAM transmembrane domain in ECs, leading to the release of soluble L1-ΔTM. The latter exerts high angiogenic function through both autocrine and paracrine activities. Mechanistically, L1-ΔTM-induced angiogenesis requires fibroblast growth factor receptor-1 signaling, implying a crosstalk between the two molecules. NOVA2 and L1-ΔTM are overexpressed in the vasculature of ovarian cancer, where L1-ΔTM levels correlate with tumor vascularization, supporting the involvement of NOVA2-mediated L1-ΔTM production in tumor angiogenesis. Finally, high NOVA2 expression is associated with poor outcome in ovarian cancer patients. Our results point to L1-ΔTM as a novel, EC-derived angiogenic factor which may represent a target for innovative antiangiogenic therapies. Growing tumors stimulate the formation of new blood vessels to supply the oxygen and nutrients the cancerous cells need to stay alive. Stopping tumors from forming the blood vessels could therefore help us to treat cancer. To do so, we need to understand how different proteins control when and how blood vessels develop. Cells make proteins by first ‘transcribing’ genes to form RNA molecules. In many cases, the RNA then goes through a process called alternative splicing. Proteins known as splicing factors cut out different segments of the RNA molecule and stick together the remaining segments to form templates for protein production. This enables a single gene to produce many different variants of a protein. Angiolini, Belloni, Giordano et al. have now studied mouse and human versions of the cells that line the blood vessels grown by tumors. This revealed that a splicing factor called NOVA2 targets a protein called L1CAM, which is normally responsible for gluing adjacent cells together. Angiolini et al. found that NOVA2 splices L1CAM into a form not seen before. Instead of remaining anchored to cell surfaces, the newly identified form of L1CAM is released into the blood circulation, where it stimulates new blood vessels to grow. Samples taken from the blood vessels of human ovarian tumors showed high levels of both NOVA2 and the modified form of L1CAM, while blood vessels in healthy tissue contain no, or very low levels of both proteins. Therefore, if the new form of L1CAM can be detected in the blood, it could be used to help cancer diagnosis, and to indicate which patients would benefit from treatments that restrict the growth of blood vessels in tumors. Further work is now needed to explore these possibilities.
Collapse
Affiliation(s)
- Francesca Angiolini
- Unit of Gynecological Oncology Research, Program of Gynecological Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Marco Giordano
- Unit of Gynecological Oncology Research, Program of Gynecological Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Campioni
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Rome, Italy
| | - Michela Lupia
- Unit of Gynecological Oncology Research, Program of Gynecological Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Brandas
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.,Università degli Studi di Pavia, Pavia, Italy
| | - Anna Di Matteo
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | | - Giovanna Jodice
- Molecular Medicine Program, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Luise
- Molecular Medicine Program, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Bertalot
- Molecular Medicine Program, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Freddi
- Molecular Medicine Program, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | | | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Carmen Ghilardi
- Laboratory of Biology and Treatment of Metastasis, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Biology and Treatment of Metastasis, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daniel Nyqvist
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Davide Gabellini
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology, Milan, Italy.,Rudbeck Laboratory and Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, Program of Gynecological Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| |
Collapse
|
6
|
Weidle UH, Birzele F, Tiefenthaler G. Potential of Protein-based Anti-metastatic Therapy with Serpins and Inter α-Trypsin Inhibitors. Cancer Genomics Proteomics 2018; 15:225-238. [PMID: 29976628 DOI: 10.21873/cgp.20081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize the principles of anti-metastatic therapy with selected serpin family proteins, such as pigment epithelial-derived factor (PEDF) and maspin, as well as inter α-trypsin inhibitor (IαIs) light chains (bikunin) and heavy chains (ITIHs). Case-by-case, antimetastatic activity may be dependent or independent of the protease-inhibitory activity of the corresponding proteins. We discuss the incidence of target deregulation in different tumor entities, mechanisms of deregulation, context-dependent functional issues as well as in vitro and in vivo target validation studies with transfected tumor cells or recombinant protein as anti-metastatic agents. Finally, we comment on possible clinical evaluation of these proteins in adjuvant therapy.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Basel, Switzerland
| | - Georg Tiefenthaler
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
7
|
Fadare O, Roma AA, Desouki MM, Gwin K, Hanley KZ, Jarboe EA, Liang SX, Quick CM, Zheng W, Hecht JL, Parkash V, Wang XJ. The significance of L1CAM expression in clear cell carcinoma of the endometrium. Histopathology 2017; 72:532-538. [PMID: 28941294 DOI: 10.1111/his.13405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oluwole Fadare
- Department of Pathology, University of California, San Diego, CA, USA
| | - Andres A Roma
- Department of Pathology, University of California, San Diego, CA, USA
| | - Mohamed M Desouki
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Katja Gwin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Krisztina Z Hanley
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Elke A Jarboe
- Department of Pathology, ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sharon X Liang
- Department of Pathology and Laboratory Medicine, Hofstra-Northwell School of Medicine, Lake Success, NY, USA
| | - Charles M Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vinita Parkash
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Xuan J Wang
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|