1
|
The co-expression of denileukin diftitox immunotoxin with Artemin: soluble and aggregation analysis in presence of an efficient protein chaperone. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Oh F, Modiano JF, Bachanova V, Vallera DA. Bispecific Targeting of EGFR and Urokinase Receptor (uPAR) Using Ligand-Targeted Toxins in Solid Tumors. Biomolecules 2020; 10:biom10060956. [PMID: 32630411 PMCID: PMC7356355 DOI: 10.3390/biom10060956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022] Open
Abstract
Ligand-targeted toxins (LTTs) are bioengineered molecules which are composed of a targeting component linked to a toxin that induces cell death once the LTT binds its target. Bispecific targeting allows for the simultaneous targeting of two receptors. In this review, we mostly focus on the epidermal growth factor receptor (EGFR) as a target. We discuss the development and testing of a bispecific LTT targeting EGFR and urokinase-type plasminogen activator receptor (uPAR) as two attractive targets implicated in tumor growth and in the regulation of the tumor microvasculature in solid tumors. In vitro and mouse xenograft studies have shown that EGFR-targeted bispecific angiotoxin (eBAT) is effective against human solid tumors. Canine studies have shown that eBAT is both safe and effective against canine hemangiosarcoma, which is physiologically similar to human angiosarcoma. Finding the appropriate dosing strategy and sequencing of eBAT administration, in combination with other therapeutics, are among important factors for future directions. Together, the data indicate that eBAT targets cancer stem cells, it may have a role in inhibiting human tumor vasculature, and its bispecific conformation may have a role in reducing toxicity in comparative oncologic trials in dogs.
Collapse
Affiliation(s)
- Felix Oh
- School of Medicine, Department of Radiation Oncology, University of Minnesota, Minneapolis, MN 55455 USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (J.F.M.); (V.B.)
| | - Jaime F. Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (J.F.M.); (V.B.)
- College of Veterinary Medicine, Department of Veterinary Clinical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Veronika Bachanova
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (J.F.M.); (V.B.)
- School of Medicine, Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A. Vallera
- School of Medicine, Department of Radiation Oncology, University of Minnesota, Minneapolis, MN 55455 USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (J.F.M.); (V.B.)
- Correspondence: ; Tel.: +61-26-266-664
| |
Collapse
|
4
|
Park SG, Choi B, Bae Y, Lee YG, Park SA, Chae YC, Kang S. Selective and Effective Cancer Treatments using Target‐Switchable Intracellular Bacterial Toxin Delivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Seong Guk Park
- Department of Biological Sciences School of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Bongseo Choi
- Department of Biological Sciences School of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | - Yoonji Bae
- Department of Biological Sciences School of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Yu Geon Lee
- Department of Biological Sciences School of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Soo Ah Park
- In Vivo Research Center UNIST Central Research Facilities Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Young Chan Chae
- Department of Biological Sciences School of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Sebyung Kang
- Department of Biological Sciences School of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
5
|
Bacteria as genetically programmable producers of bioactive natural products. Nat Rev Chem 2020; 4:172-193. [PMID: 37128046 DOI: 10.1038/s41570-020-0176-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Next to plants, bacteria account for most of the biomass on Earth. They are found everywhere, although certain species thrive only in specific ecological niches. These microorganisms biosynthesize a plethora of both primary and secondary metabolites, defined, respectively, as those required for the growth and maintenance of cellular functions and those not required for survival but offering a selective advantage for the producer under certain conditions. As a result, bacterial fermentation has long been used to manufacture valuable natural products of nutritional, agrochemical and pharmaceutical interest. The interactions of secondary metabolites with their biological targets have been optimized by millions of years of evolution and they are, thus, considered to be privileged chemical structures, not only for drug discovery. During the last two decades, functional genomics has allowed for an in-depth understanding of the underlying biosynthetic logic of secondary metabolites. This has, in turn, paved the way for the unprecedented use of bacteria as programmable biochemical workhorses. In this Review, we discuss the multifaceted use of bacteria as biological factories in diverse applications and highlight recent advances in targeted genetic engineering of bacteria for the production of valuable bioactive compounds. Emphasis is on current advances to access nature's abundance of natural products.
Collapse
|
6
|
Manoilov K. BIOLOGICAL PROPERTIES AND MEDICAL APPLICATION OF DIPHTHERIA TOXIN DERIVATIVES. BIOTECHNOLOGIA ACTA 2018. [DOI: 10.15407/biotech11.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
The Use of Plant-Derived Ribosome Inactivating Proteins in Immunotoxin Development: Past, Present and Future Generations. Toxins (Basel) 2017; 9:toxins9110344. [PMID: 29076988 PMCID: PMC5705959 DOI: 10.3390/toxins9110344] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Ribosome inactivating proteins (RIPs) form a class of toxins that was identified over a century ago. They continue to fascinate scientists and the public due to their very high activity and long-term stability which might find useful applications in the therapeutic killing of unwanted cells but can also be used in acts of terror. We will focus our review on the canonical plant-derived RIPs which display ribosomal RNA N-glycosidase activity and irreversibly inhibit protein synthesis by cleaving the 28S ribosomal RNA of the large 60S subunit of eukaryotic ribosomes. We will place particular emphasis on therapeutic applications and the generation of immunotoxins by coupling antibodies to RIPs in an attempt to target specific cells. Several generations of immunotoxins have been developed and we will review their optimisation as well as their use and limitations in pre-clinical and clinical trials. Finally, we endeavour to provide a perspective on potential future developments for the therapeutic use of immunotoxins.
Collapse
|
8
|
Cellular Entry of the Diphtheria Toxin Does Not Require the Formation of the Open-Channel State by Its Translocation Domain. Toxins (Basel) 2017; 9:toxins9100299. [PMID: 28937631 PMCID: PMC5666346 DOI: 10.3390/toxins9100299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Cellular entry of diphtheria toxin is a multistage process involving receptor targeting, endocytosis, and translocation of the catalytic domain across the endosomal membrane into the cytosol. The latter is ensured by the translocation (T) domain of the toxin, capable of undergoing conformational refolding and membrane insertion in response to the acidification of the endosomal environment. While numerous now classical studies have demonstrated the formation of an ion-conducting conformation-the Open-Channel State (OCS)-as the final step of the refolding pathway, it remains unclear whether this channel constitutes an in vivo translocation pathway or is a byproduct of the translocation. To address this question, we measure functional activity of known OCS-blocking mutants with H-to-Q replacements of C-terminal histidines of the T-domain. We also test the ability of these mutants to translocate their own N-terminus across lipid bilayers of model vesicles. The results of both experiments indicate that translocation activity does not correlate with previously published OCS activity. Finally, we determined the topology of TH5 helix in membrane-inserted T-domain using W281 fluorescence and its depth-dependent quenching by brominated lipids. Our results indicate that while TH5 becomes a transbilayer helix in a wild-type protein, it fails to insert in the case of the OCS-blocking mutant H322Q. We conclude that the formation of the OCS is not necessary for the functional translocation by the T-domain, at least in the histidine-replacement mutants, suggesting that the OCS is unlikely to constitute a translocation pathway for the cellular entry of diphtheria toxin in vivo.
Collapse
|
9
|
Abstract
Through years of evolutionary selection pressures, organisms have developed potent toxins that coincidentally have marked antineoplastic activity. These natural products have been vital for the development of multiagent treatment regimens currently employed in cancer chemotherapy, and are used in the treatment of a variety of malignancies. Therefore, this review catalogs recent advances in natural product-based drug discovery via the examination of mechanisms of action and available clinical data to highlight the utility of these novel compounds in the burgeoning age of precision medicine. The review also highlights the recent development of antibody-drug conjugates and other immunotoxins, which are capable of delivering highly cytotoxic agents previously deemed too toxic to elicit therapeutic benefit preferentially to neoplastic cells. Finally, the review examines natural products not currently used in the clinic that have novel mechanisms of action, and may serve to supplement current chemotherapeutic protocols.
Collapse
|
10
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
The role of regulatory T cells and microglia in glioblastoma-associated immunosuppression. J Neurooncol 2015; 123:405-12. [PMID: 26123363 DOI: 10.1007/s11060-015-1849-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
Cell-mediated suppression of anti-tumor immunity is multifactorial in patients with cancer, and recent studies have focused on several distinct cellular agents that are associated with this phenomenon. This review will focus on the potential role of regulatory T cells (Tregs) and microglia in the suppression of cellular immunity observed in patients with glioblastoma. We discuss the ontogeny, basic biology, evidence for activity, and potential clinical options for targeting Tregs and microglia as part of immunotherapy in affected patients.
Collapse
|
12
|
Goel G, Sun W. Cancer immunotherapy in clinical practice -- the past, present, and future. CHINESE JOURNAL OF CANCER 2015; 33:445-57. [PMID: 25189717 PMCID: PMC4190434 DOI: 10.5732/cjc.014.10123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Considerable progress has been made in the field of cancer immunotherapy in recent years. This has been made possible in large part by the identification of new immune-based cellular targets and the development of novel approaches aimed at stimulating the immune system. The role played by the immunosuppressive microenvironment in the development of tumors has been established. The success of checkpoint-inhibiting antibodies and cancer vaccines has marked the beginning of a new era in cancer treatment. This review highlights the clinically relevant principles of cancer immunology and various immunotherapeutic approaches that have either already entered mainstream oncologic practice or are currently in the process of being evaluated in clinical trials. Furthermore, the current barriers to the development of effective immunotherapies and the potential strategies of overcoming them are also discussed.
Collapse
Affiliation(s)
- Gaurav Goel
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA.
| | | |
Collapse
|
13
|
Abstract
Targeted treatment of cancer with monoclonal antibodies has added to the beneficial outcome of patients. In an attempt to improve anti-tumor activity of monoclonal antibodies, multi-specific antibodies have entered the research arena. To date, only a few multi-specific constructs have entered phase III clinical trials, in contrast to classical monoclonal antibodies, which are the standard first-line therapy in several tumor entities. In this review, we will assess selected multi-specific antibodies in pre-clinical and clinical development that may be new treatment options for cancer patients in the very near future. We will further evaluate therapy modalities including the timely distribution or the combination of various therapeutic approaches and assess the potential role of multi-specific antibodies in cancer treatment.
Collapse
Affiliation(s)
- Ron D Jachimowicz
- Department I of Internal Medicine, Innate Immunity Group, University Hospital Cologne, Joseph Stelzmann Str. 9, 50937, Cologne, Germany,
| | | | | |
Collapse
|
14
|
Karimi S, Chattopadhyay S, Chakraborty NG. Manipulation of regulatory T cells and antigen-specific cytotoxic T lymphocyte-based tumour immunotherapy. Immunology 2015; 144:186-96. [PMID: 25243729 DOI: 10.1111/imm.12387] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 12/16/2022] Open
Abstract
The most potent killing machinery in our immune system is the cytotoxic T lymphocyte (CTL). Since the possibility for self-destruction by these cells is high, many regulatory activities exist to prevent autoimmune destruction by these cells. A tumour (cancer) grows from the cells of the body and is tolerated by the body's immune system. Yet, it has been possible to generate tumour-associated antigen (TAA) -specific CTL that are also self-antigen specific in vivo, to achieve a degree of therapeutic efficacy. Tumour-associated antigen-specific T-cell tolerance through pathways of self-tolerance generation represents a significant challenge to successful immunotherapy. CD4(+) CD25(+) FoxP3(+) T cells, referred to as T regulatory (Treg) cells, are selected in the thymus as controllers of the anti-self repertoire. These cells are referred to as natural T regulatory (nTreg) cells. According to the new consensus (Nature Immunology 2013; 14:307-308) these cells are to be termed as (tTreg). There is another class of CD4(+) Treg cells also involved in regulatory function in the periphery, also phenotypically CD4(+) CD25(±) , classified as induced Treg (iTreg) cells. These cells are to be termed as peripherally induced Treg (pTreg) cells. In vitro-induced Treg cells with suppressor function should be termed as iTreg. These different Treg cells differ in their requirements for activation and in their mode of action. The current challenges are to determine the degree of specificity of these Treg cells in recognizing the same TAA as the CTL population and to circumvent their regulatory constraints so as to achieve robust CTL responses against cancer.
Collapse
Affiliation(s)
- Shirin Karimi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
15
|
Adverse events to nontargeted and targeted chemotherapeutic agents: emphasis on hypersensitivity responses. Immunol Allergy Clin North Am 2015; 34:565-96, viii. [PMID: 25017678 DOI: 10.1016/j.iac.2014.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Use of cytotoxic agents is associated with potential hypersensitivity reactions which are common with platinum compounds, L-asparaginase, taxanes, procarbazine and epipodophyllotoxins. Mechanisms underlying the reactions may involve IgE, non-allergic or a number of pathogenetically unclear events. Targeted therapies produce less collateral damage but demonstrate their own unique reactions. Cytopenias occur less often and mucocutaneous reactions to EGFR inhibitors, including papulopustular rash, are common. Fifteen currently approved mAbs provoke all four types of hypersensitivities including immune cytopenias, vasculitis, serum sickness and pulmonary events. Some successful desensitization protocols have been developed. Prevention of hypersensitivity reactions is based on skin testing, premedication and/or desensitization.
Collapse
|
16
|
Synergistic interaction between selective drugs in cell populations models. PLoS One 2015; 10:e0117558. [PMID: 25671700 PMCID: PMC4324767 DOI: 10.1371/journal.pone.0117558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023] Open
Abstract
The design of selective drugs and combinatorial drug treatments are two of the main focuses in modern pharmacology. In this study we use a mathematical model of chimeric ligand-receptor interaction to show that the combination of selective drugs is synergistic in nature, providing a way to gain optimal selective potential at reduced doses compared to the same drugs when applied individually. We use a cell population model of proliferating cells expressing two different amounts of a target protein to show that both selectivity and synergism are robust against variability and heritability in the cell population. The reduction in the total drug administered due to the synergistic performance of the selective drugs can potentially result in reduced toxicity and off-target interactions, providing a mechanism to improve the treatment of cell-based diseases caused by aberrant gene overexpression, such as cancer and diabetes.
Collapse
|
17
|
|
18
|
Baldo BA, Pham NH. Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch. Cancer Metastasis Rev 2013; 32:723-61. [PMID: 24043487 PMCID: PMC7102343 DOI: 10.1007/s10555-013-9447-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
More than 100 drugs are used to treat the many different cancers. They can be divided into agents with relatively broad, non-targeted specificity and targeted drugs developed on the basis of a more refined understanding of individual cancers and directed at specific molecular targets on different cancer cells. Individual drugs in both groups have been classified on the basis of their mechanism of action in killing cancer cells. The targeted drugs include proteasome inhibitors, toxic chimeric proteins and signal transduction inhibitors such as tyrosine kinase (non-receptor and receptor), serine/threonine kinase, histone deacetylase and mammalian target of rapamycin inhibitors. Increasingly used targeted vascular (VEGF) and platelet-derived endothelial growth factor blockade can provoke a range of pathological consequences. Many of the non-targeted drugs are cytotoxic, suppressing haematopoiesis as well as provoking cutaneous eruptions and vascular, lung and liver injury. Cytotoxic side effects of the targeted drugs occur less often and usually with less severity, but they show their own unusual adverse effects including, for example, a lengthened QT interval, a characteristic papulopustular rash, nail disorders and a hand-foot skin reaction variant. The term hypersensitivity is widely used across a number of disciplines but not always with the same definition in mind, and the terminology needs to be standardised. This is particularly apparent in cancer chemotherapy where anti-neoplastic drug-induced thrombocytopenia, neutropenia, anaemia, vascular disorders, liver injury and lung disease as well as many dermatological manifestations sometimes have an immune basis. The most insidious of all adverse consequences of targeted therapies, however, are tumour adaptation, increased malignancy and the invasive metastatic switch seen with anti-angiogenic drugs that inhibit the VEGF-A pathway. Adverse reactions to 44 non-targeted and 33 targeted, frequently used, chemotherapeutic drugs are presented together with discussions of diagnosis, premedications, desensitizations and importance of understanding the mechanisms underlying the various drug-induced reactions. There is need for wide-ranging acceptance of what constitutes a hypersensitivity reaction and for allergists to be more involved in the diagnosis, treatment and prevention of chemotherapeutic drug-induced hypersensitivity reactions.
Collapse
Affiliation(s)
- Brian A Baldo
- Molecular Immunology Unit, Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, New South Wales, Australia,
| | | |
Collapse
|
19
|
pH-triggered conformational switching along the membrane insertion pathway of the diphtheria toxin T-domain. Toxins (Basel) 2013; 5:1362-80. [PMID: 23925141 PMCID: PMC3760040 DOI: 10.3390/toxins5081362] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 11/17/2022] Open
Abstract
The translocation (T)-domain plays a key role in the action of diphtheria toxin and is responsible for transferring the catalytic domain across the endosomal membrane into the cytosol in response to acidification. Deciphering the molecular mechanism of pH-dependent refolding and membrane insertion of the T-domain, which is considered to be a paradigm for cell entry of other bacterial toxins, reveals general physicochemical principles underlying membrane protein assembly and signaling on membrane interfaces. Structure-function studies along the T-domain insertion pathway have been affected by the presence of multiple conformations at the same time, which hinders the application of high-resolution structural techniques. Here, we review recent progress in structural, functional and thermodynamic studies of the T-domain archived using a combination of site-selective fluorescence labeling with an array of spectroscopic techniques and computer simulations. We also discuss the principles of conformational switching along the insertion pathway revealed by studies of a series of T-domain mutants with substitutions of histidine residues.
Collapse
|
20
|
Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro. Antibodies (Basel) 2013. [DOI: 10.3390/antib2020236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
A mathematical model for the rational design of chimeric ligands in selective drug therapies. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e26. [PMID: 23887616 PMCID: PMC3600755 DOI: 10.1038/psp.2013.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/03/2013] [Indexed: 11/08/2022]
Abstract
Chimeric drugs with selective potential toward specific cell types constitute one of the most promising forefronts of modern Pharmacology. We present a mathematical model to test and optimize these synthetic constructs, as an alternative to conventional empirical design. We take as a case study a chimeric construct composed of epidermal growth factor (EGF) linked to different mutants of interferon (IFN). Our model quantitatively reproduces all the experimental results, illustrating how chimeras using mutants of IFN with reduced affinity exhibit enhanced selectivity against cell overexpressing EGF receptor. We also investigate how chimeric selectivity can be improved based on the balance between affinity rates, receptor abundance, activity of ligand subunits, and linker length between subunits. The simplicity and generality of the model facilitate a straightforward application to other chimeric constructs, providing a quantitative systematic design and optimization of these selective drugs against certain cell-based diseases, such as Alzheimer's and cancer.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e26; doi:10.1038/psp.2013.2; advance online publication 13 February 2013.
Collapse
|
22
|
Chen X, Zaro JL, Shen WC. Pharmacokinetics of recombinant bifunctional fusion proteins. Expert Opin Drug Metab Toxicol 2012; 8:581-95. [PMID: 22428984 DOI: 10.1517/17425255.2012.673585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The development of biotechnology has enabled the creation of various recombinant fusion proteins as a new class of biotherapeutics. The uniqueness of fusion proteins lies in their ability to fuse two or more protein domains, providing vast opportunities to generate novel combinations of functions. Pharmacokinetic (PK) studies, which are critical components in preclinical and clinical drug development, have not been fully explored for fusion proteins. The lack of general PK models and study guidelines has become a bottleneck for translation of fusion proteins from basic research to the clinic. AREAS COVERED This article reviews the current status of PK studies for fusion proteins, covering the processes that affect PK. According to their PK properties, a classification of fusion proteins is suggested along with examples from the clinic or under development. Current limitations and future perspectives for PK of fusion proteins are also discussed. EXPERT OPINION A PK model for bifunctional fusion proteins is presented to highlight the importance of mechanistic studies for a thorough understanding of the PK properties of fusion proteins. The model suggests investigating the receptor binding and subsequent intracellular disposition of individual domains, which can have dramatic impact on the PK of fusion proteins.
Collapse
Affiliation(s)
- Xiaoying Chen
- University of Southern California School of Pharmacy, Department of Pharmacology and Pharmaceutical Sciences, CA 90089-9121, USA
| | | | | |
Collapse
|
23
|
Grodzovski I, Lichtenstein M, Galski H, Lorberboum-Galski H. IL-2-granzyme A chimeric protein overcomes multidrug resistance (MDR) through a caspase 3-independent apoptotic pathway. Int J Cancer 2011; 128:1966-80. [PMID: 20568105 DOI: 10.1002/ijc.25527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the main problems of conventional anticancer therapy is multidrug resistance (MDR), whereby cells acquire resistance to structurally and functionally unrelated drugs following chemotherapeutic treatment. One of the main causes of MDR is overexpression of the P-glycoprotein transporter. In addition to extruding the chemotherapeutic drugs, it also inhibits apoptosis through the inhibition of caspases. To overcome MDR, we constructed a novel chimeric protein, interleukin (IL)-2 granzyme A (IGA), using IL-2 as a targeting moiety and granzyme A as a killing moiety, fused at the cDNA level. IL-2 binds to the high-affinity IL-2 receptor that is expressed in an array of abnormal cells, including malignant cells. Granzyme A is known to cause caspase 3-independent cell death. We show here that the IGA chimeric protein enters the target sensitive and MDR cancer cells overexpressing IL-2 receptor and induces caspase 3-independent cell death. Specifically, after its entry, IGA causes a decrease in the mitochondrial potential, triggers translocation of nm23-H1, a granzyme A-dependent DNase, from the cytoplasm to the nucleus, where it causes single-strand DNA nicks, thus causing cell death. Moreover, IGA is able to overcome MDR and kill cells resistant to chemotherapeutic drugs. We believe that overcoming MDR with targeted molecules such as IGA chimeric protein that causes caspase-independent apoptotic cell death could be applied to many other resistant types of tumors using the appropriate targeting moiety. Thus, this novel class of targeted molecules could open up new vistas in the fight against human cancer.
Collapse
Affiliation(s)
- Inna Grodzovski
- Department of Biochemistry and Molecular Biology, Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
24
|
Zhang Y, Schulte W, Pink D, Phipps K, Zijlstra A, Lewis JD, Waisman DM. Sensitivity of cancer cells to truncated diphtheria toxin. PLoS One 2010; 5:e10498. [PMID: 20463924 PMCID: PMC2864767 DOI: 10.1371/journal.pone.0010498] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 04/14/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Diphtheria toxin (DT) has been utilized as a prospective anti-cancer agent for the targeted delivery of cytotoxic therapy to otherwise untreatable neoplasia. DT is an extremely potent toxin for which the entry of a single molecule into a cell can be lethal. DT has been targeted to cancer cells by deleting the cell receptor-binding domain and combining the remaining catalytic portion with targeting proteins that selectively bind to the surface of cancer cells. It has been assumed that "receptorless" DT cannot bind to and kill cells. In the present study, we report that "receptorless" recombinant DT385 is in fact cytotoxic to a variety of cancer cell lines. METHODS In vitro cytotoxicity of DT385 was measured by cell proliferation, cell staining and apoptosis assays. For in vivo studies, the chick chorioallantoic membrane (CAM) system was used to evaluate the effect of DT385 on angiogenesis. The CAM and mouse model system was used to evaluate the effect of DT385 on HEp3 and Lewis lung carcinoma (LLC) tumor growth, respectively. RESULTS Of 18 human cancer cell lines tested, 15 were affected by DT385 with IC(50) ranging from 0.12-2.8 microM. Furthermore, high concentrations of DT385 failed to affect growth arrested cells. The cellular toxicity of DT385 was due to the inhibition of protein synthesis and induction of apoptosis. In vivo, DT385 diminished angiogenesis and decreased tumor growth in the CAM system, and inhibited the subcutaneous growth of LLC tumors in mice. CONCLUSION DT385 possesses anti-angiogenic and anti-tumor activity and may have potential as a therapeutic agent.
Collapse
Affiliation(s)
- Yi Zhang
- Departments of Biochemistry and Molecular Biology and Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Kyle Phipps
- Departments of Biochemistry and Molecular Biology and Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andries Zijlstra
- Innovascreen Inc, Halifax, Nova Scotia, Canada
- Department of Pathology, Vanderbilt University, Nashville, Tennessee, Unites States of America
| | - John D. Lewis
- Innovascreen Inc, Halifax, Nova Scotia, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - David Morton Waisman
- Departments of Biochemistry and Molecular Biology and Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
25
|
Shaker MA, Younes HM. Interleukin-2: Evaluation of Routes of Administration and Current Delivery Systems in Cancer Therapy. J Pharm Sci 2009; 98:2268-98. [DOI: 10.1002/jps.21596] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Abstract
Denileukin diftitox (Ontak®) is a novel recombinant fusion protein consisting of peptide sequences for the enzymatically active and membrane translocation domain of diphtheria toxin linked to human IL-2. Denileukin diftitox specifically binds to IL-2 receptors on the cell membrane, is internalized via receptor-mediated endocytosis and inhibits protein synthesis by ADP ribosylation of elongation factor 2, resulting in cell death. This article focuses on the clinical trial that led to the US FDA approval of the drug for cutaneous T-cell lymphoma in 1999, and other investigational studies for hematologic malignancies, recurrent and refractory chronic lymphocytic leukemia, non-Hodgkin B-cell lymphoma, graft-versus-host disease and autoimmune disease, demonstrating the activity and adverse effects of the drug.
Collapse
Affiliation(s)
- Madeleine Duvic
- The University of Texas MD Anderson Cancer Center, Division of Internal Medicine, Department of Dermatology, 1515 Holcombe Blvd, Unit 1452, Houston, TX 77030, USA
| | - Rakhshandra Talpur
- The University of Texas MD Anderson Cancer Center, Division of Internal Medicine, Department of Dermatology, 1515 Holcombe Blvd, Unit 1452, Houston, TX 77030, USA
| |
Collapse
|
27
|
White-Gilbertson S, Rubinchik S, Voelkel-Johnson C. Transformation, translation and TRAIL: an unexpected intersection. Cytokine Growth Factor Rev 2008; 19:167-72. [PMID: 18353705 DOI: 10.1016/j.cytogfr.2008.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with roles in tumor surveillance and tolerance. TRAIL selectively induces apoptosis in many malignant but not normal cells but the underlying cause for spontaneous TRAIL sensitivity remains elusive. We propose a novel hypothesis that links TRAIL sensitivity to translational arrest following stresses that inactivate eukaryotic elongation factor 2 (EF2). Affected cells experience a reduction in apoptotic threshold because, due to their short half-lives, levels of anti-apoptotic proteins quickly drop off once translation elongation is inhibited leaving pro-apoptotic proteins unchallenged. This change in protein profile renders affected cells sensitive to TRAIL-mediated apoptosis and places EF2 into the role of a sensor for cellular damage.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Medical University of South Carolina, Department of Microbiology and Immunology, PO Box 250504/BSB201, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
28
|
Frankel A, Liu JS, Rizzieri D, Hogge D. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma 2008; 49:543-53. [PMID: 18297533 DOI: 10.1080/10428190701799035] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
DT(388)IL3 fusion protein containing the catalytic and translocation domains of diphtheria toxin fused to human interleukin 3 was administered in an inter-patient dose escalation trial by 15 min i.v. infusions every other day for up to 6 doses to patients with chemo-refractory acute myeloid leukemia (AML) and myelodysplasia (MDS). The maximal tolerated dose was >12.5 microg/kg/dose. Transient grade 3 transaminasemia and grade 2 fevers, chills, hypoalbuminemia, and hypotension occurred. Peak DT(388)IL3 levels correlated with dose and day of administration but not antibody titer. Anti-DT(388)IL3 antibodies developed in most patients between day 15 and 30. Of 40 evaluable AML patients, 1 had a CR (8 months) and 1 had PR (3 months). Of 5 MDS patients, 1 had a PR (4 months). Because of the prolonged infusion schedule, many patients failed to receive six doses. DT(388)IL3 produces remissions in patients with relapsed/refractory AML and MDS with minimal toxicities, and alternate schedules of administration are needed to enhance the response rate.
Collapse
Affiliation(s)
- Arthur Frankel
- Scott & White Cancer Research Institute, Temple, TX, USA
| | | | | | | |
Collapse
|
29
|
Dean-Colomb W, Esteva FJ. Emerging Agents in the Treatment of Anthracycline- and Taxane-Refractory Metastatic Breast Cancer. Semin Oncol 2008; 35:S31-8; quiz S40. [DOI: 10.1053/j.seminoncol.2008.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
|
31
|
Agostino NM, Ali A, Nair SG, Mosca PJ. Current Immunotherapeutic Strategies in Malignant Melanoma. Surg Oncol Clin N Am 2007; 16:945-73, xi. [DOI: 10.1016/j.soc.2007.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|