1
|
Cohen AS, Khalil FK, Welsh EA, Schabath MB, Enkemann SA, Davis A, Zhou JM, Boulware DC, Kim J, Haura EB, Morse DL. Cell-surface marker discovery for lung cancer. Oncotarget 2017; 8:113373-113402. [PMID: 29371917 PMCID: PMC5768334 DOI: 10.18632/oncotarget.23009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients.
Collapse
Affiliation(s)
- Allison S Cohen
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Farah K Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric A Welsh
- Biomedical Informatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Enkemann
- Molecular Genomics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Davis
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jun-Min Zhou
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David C Boulware
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Apostolova I, Wedel F, Brenner W. Imaging of Tumor Metabolism Using Positron Emission Tomography (PET). Recent Results Cancer Res 2016; 207:177-205. [PMID: 27557539 DOI: 10.1007/978-3-319-42118-6_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular imaging employing PET/CT enables in vivo visualization, characterization, and measurement of biologic processes in tumors at a molecular and cellular level. Using specific metabolic tracers, information about the integrated function of multiple transporters and enzymes involved in tumor metabolic pathways can be depicted, and the tracers can be directly applied as biomarkers of tumor biology. In this review, we discuss the role of F-18-fluorodeoxyglucose (FDG) as an in vivo glycolytic marker which reflects alterations of glucose metabolism in cancer cells. This functional molecular imaging technique offers a complementary approach to anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) and has found widespread application as a diagnostic modality in oncology to monitor tumor biology, optimize the therapeutic management, and guide patient care. Moreover, emerging methods for PET imaging of further biologic processes relevant to cancer are reviewed, with a focus on tumor hypoxia and aberrant tumor perfusion. Hypoxic tumors are associated with poor disease control and increased resistance to cytotoxic and radiation treatment. In vivo imaging of hypoxia, perfusion, and mismatch of metabolism and perfusion has the potential to identify specific features of tumor microenvironment associated with poor treatment outcome and, thus, contribute to personalized treatment approaches.
Collapse
Affiliation(s)
- Ivayla Apostolova
- Department of Radiology and Nuclear Medicine, Medical School, Otto-von-Guericke University, Magdeburg A.ö.R., Magdeburg, Germany
| | - Florian Wedel
- Department of Nuclear Medicine, University Medicine Charité, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, University Medicine Charité, Berlin, Germany.
| |
Collapse
|
3
|
Hicks RJ, Hofman MS. Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat Rev Clin Oncol 2012; 9:712-20. [PMID: 23149896 DOI: 10.1038/nrclinonc.2012.188] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
For the evaluation of biological processes using radioisotopes, there are two competing technologies: single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Both are tomographic techniques that enable 3D localization and can be combined with CT for hybrid imaging. PET-CT has clear technical superiority including superior resolution, speed and quantitative capability. SPECT-CT currently has greater accessibility, lower cost and availability of a wider range of approved radiotracers. However, the past decade has seen dramatic growth in PET-CT with decreasing costs and development of an increasing array of PET tracers that can substitute existing SPECT applications. PET-CT is also changing the paradigm of imaging from lesion measurement to lesion characterization and target quantification, supporting a new era of personalized cancer therapy. The efficiency and cost savings associated with improved diagnosis and clinical decision-making provided by PET-CT make a cogent argument for it becoming the dominant molecular technique in oncology.
Collapse
Affiliation(s)
- Rodney J Hicks
- University of Melbourne, Departments of Medicine and Radiology, The Peter MacCallum Cancer Centre, 7 St Andrew's Place, Melbourne, VIC 3002, Australia.
| | | |
Collapse
|
5
|
Agdeppa ED, Spilker ME. A review of imaging agent development. AAPS J 2009; 11:286-99. [PMID: 19415506 PMCID: PMC2691464 DOI: 10.1208/s12248-009-9104-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/01/2009] [Indexed: 12/16/2022] Open
Abstract
This educational review highlights the processes, opportunities, and challenges encountered in the discovery and development of imaging agents, mainly positron emission tomography and single-photon emission computed tomography tracers. While the development of imaging agents parallels the drug development process, unique criteria are needed to identify opportunities for new agents. Imaging agent development has the flexibility to pursue functional or nonfunctional targets as long as they play a role in the specific disease or mechanism of interest and meet imageability requirements. However, their innovation is tempered by relatively small markets for diagnostic imaging agents, intellectual property challenges, radiolabeling constraints, and adequate target concentrations for imaging. At the same time, preclinical imaging is becoming a key translational tool for proof of mechanism and concept studies. Pharmaceutical and imaging industries face a common bottleneck in the form of the limited number of trials one company can possibly perform. However, microdosing and theranostics are evidence that partnerships between pharmaceutical and imaging companies can accelerate clinical translation of tracers and therapeutic interventions. This manuscript will comment on these aspects to provide an educational review of the discovery and development processes for imaging agents.
Collapse
Affiliation(s)
- Eric D. Agdeppa
- />Medical, Science, and Technology Office, GE Healthcare, 101 Carnegie Center, Princeton, New Jersey 08540 USA
| | - Mary E. Spilker
- />Pfizer Global Research and Development, 10646 Science Center Drive, San Diego, California 92121 USA
| |
Collapse
|
6
|
Lee JH, Rosen EL, Mankoff DA. The Role of Radiotracer Imaging in the Diagnosis and Management of Patients with Breast Cancer: Part 2—Response to Therapy, Other Indications, and Future Directions. J Nucl Med 2009; 50:738-48. [DOI: 10.2967/jnumed.108.061416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Abstract
Theragnostics is a treatment strategy that combines therapeutics with diagnostics. It associates both a diagnostic test that identifies patients most likely to be helped or harmed by a new medication, and targeted drug therapy based on the test results. Bioinformatics, genomics, proteomics, and functional genomics are molecular biology tools essential for the progress of molecular theragnostics. These tools generate the genetic and protein information required for the development of diagnostic assays. Theragnostics includes a wide range of subjects, including personalized medicine, pharmacogenomics, and molecular imaging to develop efficient new targeted therapies with adequate benefit/risk to patients and a better molecular understanding of how to optimize drug selection. Furthermore, theragnostics aims to monitor the response to the treatment, to increase drug efficacy and safety. In addition, theragnostics could eliminate the unnecessary treatment of patients for whom therapy is not appropriate, resulting in significant drug cost savings for the healthcare system. However, the introduction of theragnostic tests into routine health care requires both a demonstration of cost-effectiveness and the availability of appropriate accessible testing systems. This review reports validation studies in oncology and infectious diseases that have demonstrated the benefits of such approach in well-defined subpopulations of patients, moving the field from the drug development process toward clinical practice and routine application. Theragnostics may change the usual business model of pharmaceutical companies from the classic blockbuster model toward targeted therapies.
Collapse
|
8
|
Abstract
The ability to measure biochemical and molecular processes underlies progress in breast cancer biology and treatment. These assays have traditionally been performed by analysis of cell culture or tissue samples. More recently, functional and molecular imaging has allowed the in vivo assay of biochemistry and molecular biology, which is highly complementary to tissue-based assays. This review briefly describes different imaging modalities used in molecular imaging and then reviews applications of molecular imaging to breast cancer, with a focus on translational work. It includes sections describing work in functional and physiological tumor imaging, imaging gene product expression, imaging the tumor microenvironment, reporter gene imaging, and cell labeling. Work in both animal models and human is discussed with an eye towards studies that have relevance to breast cancer treatment in patients.
Collapse
Affiliation(s)
- David A Mankoff
- Seattle Cancer Care Alliance and University of Washington, Radiology, Seattle, WA 98109, USA.
| |
Collapse
|