1
|
Miettinen H, Lohela J, Moradi S, Inget K, Nikkinen J, Myllylä T, Karhula SS, Korhonen V. Immediate Irradiation Induced Cerebral Water and Hemodynamic Response in Whole Brain Radiotherapy. Ann Biomed Eng 2025; 53:673-682. [PMID: 39633157 PMCID: PMC11836184 DOI: 10.1007/s10439-024-03663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Effects of clinical radiotherapy are often studied between or after irradiations. The current study's aim was to monitor an immediate irradiation response in cerebral water and hemodynamics in patients treated with whole brain radiotherapy (WBRT) and to assess the response's individuality. METHODS We used functional near-infrared spectroscopy (fNIRS) to monitor changes in cerebral water, oxyhemoglobin (HbO), and deoxyhemoglobin (HbR) during the irradiation of 31 patients (age 69.3 ± 12.5 years, 16 females) receiving WBRT. The radiation dose delivered to a patient during a single measurement was 4 Gy (total dose of 20 Gy in five fractions) for most patients and 3 Gy (total dose of 30 Gy in ten fractions) for three patients. RESULTS 106 patient recordings were analyzed. They showed an immediate irradiation induced increase in HbO and HbR, and decrease in cerebral water content (P < .001) as soon as 5 s after the start of irradiation. The radiation dose, age, and gender affected recorded signals. A smaller dose resulted in a steeper change in HbR (P < .01), but larger total change in HbO (P < .01). Younger age was associated with a more significant decrease in the water signal (P < .05). In contrast, female gender was associated with a greater total increase in HbO (P < .01) and HbR (P < .001) signals. CONCLUSION There is an immediate cerebral water and hemodynamic response to irradiation and this response shows dependency on the radiation dose, age, and gender. Better understanding about the immediate radiation response may help improve the patient outcome in clinical radiotherapy.
Collapse
Affiliation(s)
- Heli Miettinen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
- Medical Research Center, Oulu, Finland.
| | - Jesse Lohela
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu, Finland
| | - Sadegh Moradi
- Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
| | - Kalle Inget
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu, Finland
| | - Juha Nikkinen
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu, Finland
| | - Teemu Myllylä
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
| | - Sakari S Karhula
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu, Finland
| | - Vesa Korhonen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu, Finland
| |
Collapse
|
2
|
Costa BBSD, Windlin IC, Koterba E, Yamaki VN, Rabelo NN, Solla DJF, Samaia da Silva Coelho AC, Telles JPM, Teixeira MJ, Figueiredo EG. Glibenclamide in aneurysmal subarachnoid hemorrhage: a randomized controlled clinical trial. J Neurosurg 2022; 137:121-128. [PMID: 34798604 DOI: 10.3171/2021.7.jns21846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/26/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Glibenclamide has been shown to improve outcomes in cerebral ischemia, traumatic brain injury, and subarachnoid hemorrhage (SAH). The authors sought to evaluate glibenclamide's impact on mortality and functional outcomes of patients with aneurysmal SAH (aSAH). METHODS Patients with radiologically confirmed aSAH, aged 18 to 70 years, who presented to the hospital within 96 hours of ictus were randomly allocated to receive 5 mg of oral glibenclamide for 21 days or placebo, in a modified intention-to-treat analysis. Outcomes were mortality and functional status at discharge and 6 months, evaluated using the modified Rankin Scale (mRS). RESULTS A total of 78 patients were randomized and allocated to glibenclamide (n = 38) or placebo (n = 40). Baseline characteristics were similar between groups. The mean patient age was 53.1 years, and the majority of patients were female (75.6%). The median Hunt and Hess, World Federation of Neurosurgical Societies (WFNS), and modified Fisher scale (mFS) scores were 3 (IQR 2-4), 3 (IQR 3-4), and 3 (IQR 1-4), respectively. Glibenclamide did not improve the functional outcome (mRS) after 6 months (ordinal analysis, unadjusted common OR 0.66 [95% CI 0.29-1.48], adjusted common OR 1.25 [95% CI 0.46-3.37]). Similar results were found for analyses considering the dichotomized 6-month mRS score (favorable score 0-2), as well as for the secondary outcomes of discharge mRS score (either ordinal or dichotomized), mortality, and delayed cerebral ischemia. Hypoglycemia was more frequently observed in the glibenclamide group (5.3%). CONCLUSIONS In this study, glibenclamide was not associated with better functional outcomes after aSAH. Mortality and delayed cerebral ischemia rates were also similar compared with placebo.
Collapse
|
3
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
4
|
Armahizer MJ, Howard AK, Seung H, Kalasapudi L, Sansur C, Morris NA. Risk Factors for Hypoglycemia with the Use of Enteral Glyburide in Neurocritical Care Patients. World Neurosurg 2020; 147:e63-e68. [PMID: 33253952 DOI: 10.1016/j.wneu.2020.11.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Intravenous glyburide has demonstrated safety when used for attenuation of cerebral edema, although safety data are lacking for enteral glyburide when used for this indication. We aimed to determine the prevalence of and risk factors for hypoglycemia in neurocritical care patients receiving enteral glyburide. METHODS We performed a retrospective case-control chart review (hypoglycemia vs. no hypoglycemia) of adult patients who received enteral glyburide for prevention or treatment of cerebral or spinal cord edema. Hypoglycemia was defined as a blood glucose <55.8 mg/dL. Descriptive statistics were used, with multivariate analysis to measure the association of risk factors and outcomes. Logistic regression was applied to outcomes with an exposure. Potential confounders were evaluated using the t-test or the Wilcoxon rank-sum test for continuous variables, and the χ2 test or the Fisher exact test for categorical variables. RESULTS Seventy-one patients (60.6% men, median age 60 years) were included. The majority received 2.5 mg of enteral glyburide twice daily. Diagnoses included tumors (35.2%), intracerebral hemorrhage (28.2%), postspinal surgery (12.7%), and ischemic stroke (12.7%). Hypoglycemia occurred in 17 (23.9%) patients. Multivariate analysis identified admission serum creatinine (odds ratio, 27.2; [1.661, 445.3]; P < 0.05) as a risk factor for hypoglycemia, whereas body mass index >30 (odds ratio, 0.085; [0.008, 0.921]; P < 0.05) was protective. CONCLUSIONS Hypoglycemic episodes are common following enteral glyburide in neurocritical care patients. Both patients with and without diabetes mellitus are at risk of hypoglycemia. Elevated admission serum creatinine may increase the risk of hypoglycemia when utilizing glyburide for prevention or treatment of cerebral or spinal cord edema.
Collapse
Affiliation(s)
- Michael J Armahizer
- Department of Pharmacy, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Amy Kruger Howard
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Hyunuk Seung
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Lakshman Kalasapudi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Charles Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicholas A Morris
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Gorse KM, Lantzy MK, Lee ED, Lafrenaye AD. Transient Receptor Potential Melastatin 4 Induces Astrocyte Swelling But Not Death after Diffuse Traumatic Brain Injury. J Neurotrauma 2018; 35:1694-1704. [PMID: 29390943 DOI: 10.1089/neu.2017.5275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a prevalent disease with significant costs. Although progress has been made in understanding the complex pathobiology of focal lesions associated with TBI, questions remain regarding the diffuse responses to injury. Expression of the transient receptor potential melastatin 4 (Trpm4) channel is linked to cytotoxic edema during hemorrhagic contusion expansion. However, little is known about Trpm4 following diffuse TBI. To explore Trpm4 expression in diffuse TBI, rats were subjected to a diffuse central fluid percussion injury (CFPI) and survived for 1.5 h to 8 weeks. The total number of Trpm4+ cells, as well as individual cellular intensity/expression of Trpm4, were assessed. Hemotoxylin and eosin (H&E) labeling was performed to evaluate cell damage/death potentially associated with Trpm4 expression following diffuse TBI. Finally, ultrastructural assessments were performed to evaluate the integrity of Trpm4+ cells and the potential for swelling associated with Trpm4 expression. Trpm4 was primarily restricted to astrocytes within the hippocampus and peaked at 6 h post-injury. While the number of Trpm4+ astrocytes returned to sham levels by 8 weeks post-CFPI, cellular intensity occurred in region-specific waves following injury. Correlative H&E assessments demonstrated little evidence of hippocampal damage, suggesting that Trpm4 expression by astrocytes does not precipitate cell death following diffuse TBI. Additionally, ultrastructural assessments showed Trpm4+ astrocytes exhibited twice the soma size compared with Trpm4- astrocytes, indicating that astrocyte swelling is associated with Trpm4 expression. This study provides a foundation for future investigations into the role of Trpm4 in astrocyte swelling and edema following diffuse TBI.
Collapse
Affiliation(s)
- Karen M Gorse
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | | | - Eun D Lee
- 3 Department of Obstetrics and Gynecology, Virginia Commonwealth University , Richmond, Virginia
| | - Audrey D Lafrenaye
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
6
|
Eberhardt O, Topka H. Neurological outcomes of antidiabetic therapy: What the neurologist should know. Clin Neurol Neurosurg 2017; 158:60-66. [PMID: 28477558 DOI: 10.1016/j.clineuro.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/05/2017] [Accepted: 04/15/2017] [Indexed: 02/09/2023]
Abstract
Considering the causative or contributory effects of diabetes mellitus on common neurological diseases such as polyneuropathy, stroke and dementia, modern antidiabetic drugs may be expected to reduce incidence or progression of these conditions. Nevertheless, most observed benefits have been small, except in the context of therapy for diabetes mellitus type I and new-onset polyneuropathy. Recently, semaglutide, a GLP-1 analog, has been shown to significantly reduce stroke incidence in a randomized controlled trial. Beneficial effects of antidiabetic drugs on stroke severity or outcome have been controversial, though. The level of risk conferred by diabetes mellitus, the complex pathophysiology of neurological diseases, issues of trial design, side-effects of antidiabetic drugs as well as co-medication might be interacting factors that determine the performance of antidiabetic therapy with respect to neurological outcomes. It might be speculated that early treatment of prediabetes might prevent cerebral arteriosclerosis, cognitive decline or polyneuropathy more effectively, but this remains to be demonstrated.
Collapse
Affiliation(s)
- Olaf Eberhardt
- Department for Neurology, Clinical Neurophysiology, Clinical Neuropsychology and Stroke Unit, Klinikum Bogenhausen Englschalkinger Str. 77, München, 81925, Germany.
| | - Helge Topka
- Department for Neurology, Clinical Neurophysiology, Clinical Neuropsychology and Stroke Unit, Klinikum Bogenhausen Englschalkinger Str. 77, München, 81925, Germany
| |
Collapse
|
7
|
Effects of Oral Glibenclamide on Brain Contusion Volume and Functional Outcome of Patients with Moderate and Severe Traumatic Brain Injuries: A Randomized Double-Blind Placebo-Controlled Clinical Trial. World Neurosurg 2017; 101:130-136. [DOI: 10.1016/j.wneu.2017.01.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 01/28/2023]
|
8
|
Hanna A, Boggs DH, Kwok Y, Simard M, Regine WF, Mehta M. What predicts early volumetric edema increase following stereotactic radiosurgery for brain metastases? J Neurooncol 2015; 127:303-11. [DOI: 10.1007/s11060-015-2034-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
|