1
|
Brockmueller A, Mahmoudi N, Movaeni AK, Mueller AL, Kajbafzadeh AM, Shakibaei M, Zolbin MM. Stem Cells and Natural Agents in the Management of Neurodegenerative Diseases: A New Approach. Neurochem Res 2023; 48:39-53. [PMID: 36112254 DOI: 10.1007/s11064-022-03746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases refer to a group of neurological disorders as a consequence of various destructive illnesses, that predominantly impact neurons in the central nervous system, resulting in impairments in certain brain functions. Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and other neurodegenerative disorders represent a major risk to human health. In order to optimize structural and functional recovery, reconstructive methods integrate many approaches now, to address the complex and multivariate pathophysiology of neurodegenerative disorders. Stem cells, with their unique property of regeneration, offer new possibilities in regenerative and reconstructive medicine. Concurrently, there is an important role for natural products in controlling many health sufferings and they can delay or even prevent the onset of various diseases. In addition, due to their therapeutic properties, they have been used as neuroprotective agents to treat neurodegenerative disorders. After decades of intensive research, scientists made advances in treating these disorders so far, but current therapies are still not capable of preventing the illnesses from progressing. Therefore, in this review, we focused on a new perspective combining stem cells and natural products as an innovative therapy option in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Negin Mahmoudi
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Movaeni
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Puranik N, Arukha AP, Yadav SK, Yadav D, Jin JO. Exploring the Role of Stem Cell Therapy in Treating Neurodegenerative Diseases: Challenges and Current Perspectives. Curr Stem Cell Res Ther 2022; 17:113-125. [PMID: 35135462 DOI: 10.2174/1574888x16666210810103838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
:
Several human neurological disorders, such as Parkinson’s disease, Alzheimer’s disease,
amyotrophic lateral sclerosis, Huntington’s disease, spinal cord injury, multiple sclerosis, and brain
stroke, are caused by the injury to neurons or glial cells. The recent years have witnessed the successful
generation of neurons and glia cells driving efforts to develop stem-cell-based therapies for
patients to combat a broad spectrum of human neurological diseases. The inadequacy of suitable
cell types for cell replacement therapy in patients suffering from neurological disorders has hampered
the development of this promising therapeutic approach. Attempts are thus being made to reconstruct
viable neurons and glial cells from different stem cells, such as embryonic stem cells,
mesenchymal stem cells, and neural stem cells. Dedicated research to cultivate stem cell-based
brain transplantation therapies has been carried out. We aim at compiling the breakthroughs in the
field of stem cell-based therapy for the treatment of neurodegenerative maladies, emphasizing the
shortcomings faced, victories achieved, and the future prospects of the therapy in clinical settings.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Biological Science, Bharathiar University, Coimbatore, Tamil Nadu-641046, India
| | - Ananta Prasad Arukha
- Comparative Diagnostic
and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville- 32608, U.S.A
| | - Shiv Kumar Yadav
- Department of Botany, Government Lal Bahadur Shastri PG college, Sironj, Vidisha, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
| | - Jun O. Jin
- Department
of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
3
|
Elabi OF, Pass R, Sormonta I, Nolbrant S, Drummond N, Kirkeby A, Kunath T, Parmar M, Lane EL. Human Embryonic Stem Cell-Derived Dopaminergic Grafts Alleviate L-DOPA Induced Dyskinesia. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1881-1896. [PMID: 35466951 DOI: 10.3233/jpd-212920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND First-in-human studies to test the efficacy and safety of human embryonic stem cells (hESC)-derived dopaminergic cells in the treatment of Parkinson's disease (PD) are imminent. Pre-clinical studies using hESC-derived dopamine neuron transplants in rat models have indicated that the benefits parallel those shown with fetal tissue but have thus far failed to consider how ongoing L-DOPA administration might impact on the graft. OBJECTIVE To determine whether L-DOPA impacts on survival and functional recovery following grafting of hESC-derived dopaminergic neurons. METHODS Unilateral 6-OHDA lesioned rats were administered with either saline or L-DOPA prior to, and for 18 weeks following surgical implantation of dopaminergic neural progenitors derived from RC17 hESCs according to two distinct protocols in independent laboratories. RESULTS Grafts from both protocols elicited reduction in amphetamine-induced rotations. Reduced L-DOPA-induced dyskinesia preceded the improvement in amphetamine-induced rotations. Furthermore, L-DOPA had no effect on overall survival (HuNu) or dopaminergic neuron content of the graft (TH positive cells) but did lead to an increase in the number of GIRK2 positive neurons. CONCLUSION Critically, we found that L-DOPA was not detrimental to graft function, potentially enhancing graft maturation and promoting an A9 phenotype. Early improvement of L-DOPA-induced dyskinesia suggests that grafts may support the handling of exogenously supplied dopamine earlier than improvements in amphetamine-induced behaviours indicate. Given that one of the protocols will be employed in the production of cells for the European STEM-PD clinical trial, this is vital information for the management of patients and achieving optimal outcomes following transplantation of hESC-derived grafts for PD.
Collapse
Affiliation(s)
- Osama F Elabi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Rachel Pass
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Irene Sormonta
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Nicola Drummond
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Agnete Kirkeby
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Neuroscience and The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig 2020; 7:8. [PMID: 32695801 DOI: 10.21037/sci-2020-001] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Recent research reporting successful translation of stem cell therapies to patients have enriched the hope that such regenerative strategies may one day become a treatment for a wide range of vexing diseases. In fact, the past few years witnessed, a rather exponential advancement in clinical trials revolving around stem cell-based therapies. Some of these trials resulted in remarkable impact on various diseases. In this review, the advances and challenges for the development of stem-cell-based therapies are described, with focus on the use of stem cells in dentistry in addition to the advances reached in regenerative treatment modalities in several diseases. The limitations of these treatments and ongoing challenges in the field are also discussed while shedding light on the ethical and regulatory challenges in translating autologous stem cell-based interventions, into safe and effective therapies.
Collapse
Affiliation(s)
- Riham Mohamed Aly
- Department of Basic Dental Science, National Research Centre, Cairo, Egypt.,Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Mine Y, Momiyama T, Hayashi T, Kawase T. Grafted Miniature-Swine Neural Stem Cells of Early Embryonic Mesencephalic Neuroepithelial Origin can Repair the Damaged Neural Circuitry of Parkinson's Disease Model Rats. Neuroscience 2018; 386:51-67. [PMID: 29932984 DOI: 10.1016/j.neuroscience.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Although recent progress in the use of human iPS cell-derived midbrain dopaminergic progenitors is remarkable, alternatives are essential in the strategies of treatment of basal-ganglia-related diseases. Attention has been focused on neural stem cells (NSCs) as one of the possible candidates of donor material for neural transplantation, because of their multipotency and self-renewal characteristics. In the present study, miniature-swine (mini-swine) mesencephalic neuroepithelial stem cells (M-NESCs) of embryonic 17 and 18 days grafted in the parkinsonian rat striatum were assessed immunohistochemically, behaviorally and electrophysiologically to confirm their feasibility for the neural xenografting as a donor material. Grafted mini-swine M-NESCs survived in parkinsonian rat striatum at 8 weeks after transplantation and many of them differentiated into tyrosine hydroxylase (TH)-positive cells. The parkinsonian model rats grafted with mini-swine M-NESCs exhibited a functional recovery from their parkinsonian behavioral defects. The majority of donor-derived TH-positive cells exhibited a matured morphology at 8 weeks. Whole-cell recordings from donor-derived neurons in the host rat brain slices incorporating the graft revealed the presence of multiple types of neurons including dopaminergic. Glutamatergic and GABAergic post-synaptic currents were evoked in the donor-derived cells by stimulation of the host site, suggesting they receive both excitatory and inhibitory synaptic inputs from host area. The present study shows that non-rodent mammalian M-NESCs can differentiate into functionally active neurons in the diseased xenogeneic environment and could improve the parkinsonian behavioral defects over the species. Neuroepithelial stem cells could be an attractive candidate as a source of donor material for neural transplantation.
Collapse
Affiliation(s)
- Yutaka Mine
- Department of Neurosurgery and Endovascular Surgery, Brain Nerve Center, Saiseikai Yokohamashi Tobu Hospital, Yokohama 230-8765, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Clinical Research, Tochigi Medical Center, National Hospital Organization, Utsunomiya 320-8580, Japan
| | - Toshihiko Momiyama
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan; Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Takuro Hayashi
- Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Neurosurgery, Tokyo Medical Center, National Hospital Organization, Tokyo 152-8902, Japan
| | - Takeshi Kawase
- Department of Neurosurgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Qosa H, Volpe DA. The development of biological therapies for neurological diseases: moving on from previous failures. Expert Opin Drug Discov 2018; 13:283-293. [PMID: 29394876 DOI: 10.1080/17460441.2018.1437142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although years of research have expanded the use of biologics for several clinical conditions, such development has not yet occurred in the treatment of neurological diseases. With the advancement of biologic technologies, there is promise for these therapeutics as novel therapeutic approaches for neurological diseases. Areas covered: In this article, the authors review the therapeutic potential of different types of biologics for the treatment of neurological diseases. Preclinical and clinical studies that investigate the efficacy and safety of biologics in the treatment of neurological diseases, namely Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, and stroke, were reviewed. Moreover, the authors describe the key challenges in the development of therapeutically safe and effective biologics for the treatment of neurological diseases. Expert opinion: Several biologics have shown promise in the treatment of neurological diseases. However, the complexity of the CNS, as well as a limited understanding of disease progression, and restricted access of biologics to the CNS has limited successful development. Therefore, more research needs to be conducted to overcome these hurdles before developing effective and safe biologics for neurological diseases. The emergence of new technologies for the design, production and delivery of biologics will accelerate translating biologics to the clinic.
Collapse
Affiliation(s)
- Hisham Qosa
- a Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences , Center for Drug Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| | - Donna A Volpe
- a Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences , Center for Drug Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| |
Collapse
|
7
|
Combining NT3-overexpressing MSCs and PLGA microcarriers for brain tissue engineering: A potential tool for treatment of Parkinson's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:934-943. [PMID: 28482609 DOI: 10.1016/j.msec.2017.02.178] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/03/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that characterized by destruction of substantia nigrostriatal pathway due to the loss of dopaminergic (DA) neurons. Regardless of substantial efforts for treatment of PD in recent years, an effective therapeutic strategy is still missing. In a multidisciplinary approach, bone marrow derived mesenchymal stem cells (BMSCs) are genetically engineered to overexpress neurotrophin-3 (nt-3 gene) that protect central nervous system tissues and stimulates neuronal-like differentiation of BMSCs. Poly(lactic-co-glycolic acid) (PLGA) microcarriers are designed as an injectable scaffold and synthesized via double emulsion method. The surface of PLGA microcarriers are functionalized by collagen as a bioadhesive agent for improved cell attachment. The results demonstrate effective overexpression of NT-3. The expression of tyrosine hydroxylase (TH) in transfected BMSCs reveal that NT-3 promotes the intracellular signaling pathway of DA neuron differentiation. It is also shown that transfected BMSCs are successfully attached to the surface of microcarriers. The presence of dopamine in peripheral media of cell/microcarrier complex reveals that BMSCs are successfully differentiated into dopaminergic neuron. Our approach that sustains presence of growth factor can be suggested as a novel complementary therapeutic strategy for treatment of Parkinson disease.
Collapse
|
8
|
Daviaud N, Garbayo E, Sindji L, Martínez-Serrano A, Schiller PC, Montero-Menei CN. Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson's disease. Stem Cells Transl Med 2015; 4:670-84. [PMID: 25925835 DOI: 10.5966/sctm.2014-0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. SIGNIFICANCE Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). The present work elucidates and compares the survival, differentiation, and neuroprotective mechanisms of marrow-isolated adult multilineage inducible cells and human neural stem cells both adhered to neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo organotypic model of PD made from brain sagittal slices.
Collapse
Affiliation(s)
- Nicolas Daviaud
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elisa Garbayo
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laurence Sindji
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alberto Martínez-Serrano
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paul C Schiller
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Claudia N Montero-Menei
- INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; L'université Nantes, Angers, Le Mans, Angers University, Angers, France; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa," Autonomous University of Madrid-Consejo Superior de Investigaciones Científicas, Campus Cantoblanco, Madrid, Spain; Miami Veterans Healthcare System, Department of Orthopedics, and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
9
|
Upadhyay G, Shankar S, Srivastava RK. Stem Cells in Neurological Disorders: Emerging Therapy with Stunning Hopes. Mol Neurobiol 2014; 52:610-25. [DOI: 10.1007/s12035-014-8883-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
|
10
|
Muller-Borer B, Esch G, Aldina R, Woon W, Fox R, Bursac N, Hiller S, Maeda N, Shepherd N, Jin JP, Hutson M, Anderson P, Kirby ML, Malouf NN. Calcium dependent CAMTA1 in adult stem cell commitment to a myocardial lineage. PLoS One 2012; 7:e38454. [PMID: 22715383 PMCID: PMC3371086 DOI: 10.1371/journal.pone.0038454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/06/2012] [Indexed: 12/31/2022] Open
Abstract
The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8–16 days later. These intercellular communications are associated with novel Ca2+ oscillations in the stem cells that are synchronous with the Ca2+ transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24–48 hrs in co-culture. Early and significant up-regulation of Ca2+-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca2+ signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca2+ signals that activate a myocardial gene program in the stem cells via a novel and early Ca2+-dependent intermediate, up-regulation of CAMTA1.
Collapse
Affiliation(s)
- Barbara Muller-Borer
- Department of Cardiovascular Sciences, East Carolina University, Greenville, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Reprogramming of adult somatic cells into pluripotent stem cells may provide an attractive source of stem cells for regenerative medicine. It has emerged as an invaluable method for generating patient-specific stem cells of any cell lineage without the use of embryonic stem cells. A revolutionary study in 2006 showed that it is possible to convert adult somatic cells directly into pluripotent stem cells by using a limited number of pluripotent transcription factors and is called as iPS cells. Currently, both genomic integrating viral and nonintegrating nonviral methods are used to generate iPS cells. However, the viral-based technology poses increased risk of safety, and more studies are now focused on nonviral-based technology to obtain autologous stem cells for clinical therapy. In this review, the pros and cons of the present iPS cell technology and the future direction for the successful translation of this technology into the clinic are discussed.
Collapse
|
12
|
Winner B, Vogt-Weisenhorn DM, Lie CD, Blümcke I, Winkler J. Cellular repair strategies in Parkinson's disease. Ther Adv Neurol Disord 2011; 2:51-60. [PMID: 21180641 DOI: 10.1177/1756285608100324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 0.7% of the elderly population (defined as over 65 years of age). PD is clinically characterized by resting tremor, muscular rigidity, hypokinesia and postural instability. These motor symptoms result largely from the deficiency or dysfunction of dopaminergic neurons in the substantia nigra. Histopathological analysis reveals depletion of dopaminergic neurons as well as eosinophilic intracytoplasmic inclusions (Lewy bodies) in surviving neurons of the substantia nigra and other brain regions. The molecular pathogenesis is linked to protein misfolding by compromised alpha-synuclein and/or related proteins (synucleinopathy). Therefore, successful therapy of motor symptoms aims for the restoration of dopaminergic neurotransmission. Pharmacological drug treatment is usually effective only at an early stage of the disease but cannot halt progressive neuronal degeneration. With recent developments in stem cell technology, cell repair or replacement approaches came into focus. Here, we review new therapeutic strategies resulting from the innate propensity of the adult brain to generate new neurons, either by pharmacological stimulation of endogenous adult stem cell population or exogenous cell transplantation modalities.
Collapse
Affiliation(s)
- Beate Winner
- Department of Neurology, University of Regensburg, Regensburg, Germany; and Salk Institute of Biological Studies, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
13
|
Células madre y medicina regenerativa en urología, 2.a parte: urotelio, vejiga, uretra y próstata. Actas Urol Esp 2010. [DOI: 10.1016/j.acuro.2010.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Moroni L, de Wijn JR, van Blitterswijk CA. Integrating novel technologies to fabricate smart scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 19:543-72. [PMID: 18419938 DOI: 10.1163/156856208784089571] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissue engineering aims at restoring or regenerating a damaged tissue by combining cells, derived from a patient biopsy, with a 3D porous matrix functioning as a scaffold. After isolation and eventual in vitro expansion, cells are seeded on the 3D scaffolds and implanted directly or at a later stage in the patient's body. 3D scaffolds need to satisfy a number of requirements: (i) biocompatibility, (ii) biodegradability and/or bioresorbability, (iii) suitable mechanical properties, (iv) adequate physicochemical properties to direct cell-material interactions matching the tissue to be replaced and (v) ease in regaining the original shape of the damaged tissue and the integration with the surrounding environment. Still, it appears to be a challenge to satisfy all the aforementioned requisites with the biomaterials and the scaffold fabrication technologies nowadays available. 3D scaffolds can be fabricated with various techniques, among which rapid prototyping and electrospinning seem to be the most promising. Rapid prototyping technologies allow manufacturing scaffolds with a controlled, completely accessible pore network--determinant for nutrient supply and diffusion--in a CAD/CAM fashion. Electrospinning (ESP) allows mimicking the extracellular matrix (ECM) environment of the cells and can provide fibrous scaffolds with instructive surface properties to direct cell faith into the proper lineage. Yet, these fabrication methods have some disadvantages if considered alone. This review aims at summarizing conventional and novel scaffold fabrication techniques and the biomaterials used for tissue engineering and drug-delivery applications. A new trend seems to emerge in the field of scaffold design where different scaffolds fabrication technologies and different biomaterials are combined to provide cells with mechanical, physicochemical and biological cues at the macro-, micro- and nano-scale. If merged together, these integrated technologies may lead to the generation of a new set of 3D scaffolds that satisfies all of the scaffolds' requirements for tissue-engineering applications and may contribute to their success in a long-term scenario.
Collapse
Affiliation(s)
- L Moroni
- Institute for BioMedical Technology (BMTI), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | |
Collapse
|
15
|
Miyazaki H, Kato K, Teramura Y, Iwata H. A Collagen-Binding Mimetic of Neural Cell Adhesion Molecule. Bioconjug Chem 2008; 19:1119-23. [DOI: 10.1021/bc700470v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hiroko Miyazaki
- Department of Reparative Materials, Institute for Frontier Medical Sciences and Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Koichi Kato
- Department of Reparative Materials, Institute for Frontier Medical Sciences and Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuji Teramura
- Department of Reparative Materials, Institute for Frontier Medical Sciences and Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroo Iwata
- Department of Reparative Materials, Institute for Frontier Medical Sciences and Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Abstract
This overview of Parkinson's disease is designed to serve as a background to the discussion elsewhere in this supplement on the pharmacotherapy used in its management. Parkinson's disease is a common progressive neurodegenerative condition associated with significant disability and negative impact on quality of life. Although the cause of Parkinson's disease is unknown, the pathologic manifestation involves the loss or dysfunction of dopaminergic neurons in the substantia nigra pars compacta. Characteristic clinical manifestations include difficulty with coordinated movement such as asymmetric resting tremor, rigidity, and bradykinesia. These symptoms and their response to levodopa constitute the basis for a clinical diagnosis of Parkinson's disease. Postural instability and gait abnormalities occur in more advanced disease. Although there is no cure for Parkinson's disease, a number of pharmacologic treatments are available for managing the motor and nonmotor symptoms. Research is under way to assess the disease-modifying ability of both standard and newer treatments.
Collapse
Affiliation(s)
- Mark Lew
- Division of Movement Disorders, Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
17
|
Correia AS, Anisimov SV, Roybon L, Li JY, Brundin P. Fibroblast growth factor-20 increases the yield of midbrain dopaminergic neurons derived from human embryonic stem cells. Front Neuroanat 2007; 1:4. [PMID: 18958198 PMCID: PMC2525922 DOI: 10.3389/neuro.05.004.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 12/12/2007] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system, fibroblast growth factor (FGF)-20 has been reported to act preferentially on midbrain dopaminergic neurons. It also promotes the dopaminergic differentiation of stem cells. We have analyzed the effects of FGF-20 on human embryonic stem cells (hESCs) differentiation into dopaminergic neurons. We induced neuronal differentiation of hESCs by co-culturing those with PA6 mouse stromal cells for 3 weeks. When we supplemented the culture medium with FGF-20, the number of tyrosine hydroxylase (TH)-expressing neurons increased fivefold, from 3% to 15% of the hESC-derived cells. The cultured cells also expressed other midbrain dopaminergic markers (PITX3, En1, Msx1, and Aldh1), suggesting that some had differentiated into midbrain dopaminergic neurons. We observed no effect of FGF-20 on the size of the soma area or neurite length of the TH-immunopositive neurons. Regardless of whether FGF-20 had been added or not, 17% of the hESC-derived cells expressed the pan-neuronal marker b-III-Tubulin. The proportion of proliferating cells positive for Ki-67 was also not affected by FGF-20 (7% of the hESC-derived cells). By contrast, after 3 weeks in culture FGF-20 significantly reduced the proportion of cells undergoing cell death, as revealed by immunoreactivity for cleaved caspase-8, Bcl-2 associated X protein (BAX) and cleaved caspase-3 (2.5% to 1.2% of cleaved caspase-3-positive cells out of the hESC-derived cells). Taken together, our results indicate that FGF-20 specifically increases the yield of dopaminergic neurons from hESCs grown on PA6 feeder cells and at least part of this effect is due to a reduction in cell death.
Collapse
Affiliation(s)
- Ana Sofia Correia
- Neuronal Survival Unit, Department of Experimental Medical Science, Lund University, Wallenberg Neuroscience Center, Lund Sweden
| | | | | | | | | |
Collapse
|
18
|
Kugawa F, Watanabe M, Tamanoi F. Chemical Biology/ Chemical Genetics/ Chemical Genomics: Importance of Chemical Library. CHEM-BIO INFORMATICS JOURNAL 2007. [DOI: 10.1273/cbij.7.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fumihiko Kugawa
- Department of Biological Pharmaceutical Sciences, College of Pharmacy, Nihon University
| | - Masaru Watanabe
- Department of Microbiology, Immunology, and Molecular Genetics, University of California
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California
| |
Collapse
|