1
|
Younas N, Zafar S, Saleem T, Fernandez Flores LC, Younas A, Schmitz M, Zerr I. Differential interactome mapping of aggregation prone/prion-like proteins under stress: novel links to stress granule biology. Cell Biosci 2023; 13:221. [PMID: 38041189 PMCID: PMC10693047 DOI: 10.1186/s13578-023-01164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Aberrant stress granules (SGs) are emerging as prime suspects in the nucleation of toxic protein aggregates. Understanding the molecular networks linked with aggregation-prone proteins (prion protein, synuclein, and tau) under stressful environments is crucial to understand pathophysiological cascades associated with these proteins. METHODS We characterized and validated oxidative stress-induced molecular network changes of endogenous aggregation-prone proteins (prion protein, synuclein, and tau) by employing immunoprecipitation coupled with mass spectrometry analysis under basal and oxidative stress conditions. We used two different cell models (SH-SY5Y: human neuroblastoma and HeLa cell line) to induce oxidative stress using a well-known inducer (sodium arsenite) of oxidative stress. RESULTS Overall, we identified 597 proteins as potential interaction partners. Our comparative interactome mapping provides comprehensive network reorganizations of three aggregation-prone hallmark proteins, establish novel interacting partners and their dysregulation, and validates that prion protein and synuclein localize in cytoplasmic SGs. Localization of prion protein and synuclein in TIA1-positive SGs provides an important link between SG pathobiology and aggregation-prone proteins. In addition, dysregulation (downregulation) of prion protein and exportin-5 protein, and translocation of exportin-5 into the nucleus under oxidative stress shed light on nucleocytoplasmic transport defects during the stress response. CONCLUSIONS The current study contributes to our understanding of stress-mediated network rearrangements and posttranslational modifications of prion/prion-like proteins. Localization of prion protein and synuclein in the cytoplasmic SGs provides an important link between stress granule pathobiology and aggregation-prone proteins. In addition, our findings demonstrate nucleocytoplasmic transport defects after oxidative stress via dysregulation and nuclear accumulation of exportin-5.
Collapse
Affiliation(s)
- Neelam Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Saima Zafar
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Saleem
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Leticia Camila Fernandez Flores
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Abrar Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
2
|
Weaver C, Bin Satter K, Richardson KP, Tran LKH, Tran PMH, Purohit S. Diagnostic and Prognostic Biomarkers in Renal Clear Cell Carcinoma. Biomedicines 2022; 10:biomedicines10112953. [PMID: 36428521 PMCID: PMC9687861 DOI: 10.3390/biomedicines10112953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Renal clear cell carcinoma (ccRCC) comprises over 75% of all renal tumors and arises in the epithelial cells of the proximal convoluted tubule. Molecularly ccRCC is characterized by copy number alterations (CNAs) such as the loss of chromosome 3p and VHL inactivation. Additional driver mutations (SETD2, PBRM1, BAP1, and others) promote genomic instability and tumor cell metastasis through the dysregulation of various metabolic and immune-response pathways. Many researchers identified mutation, gene expression, and proteomic signatures for early diagnosis and prognostics for ccRCC. Despite a tremendous influx of data regarding DNA alterations, gene expression, and protein expression, the incorporation of these analyses for diagnosis and prognosis of RCC into the clinical application has not been implemented yet. In this review, we focused on the molecular changes associated with ccRCC development, along with gene expression and protein signatures, to emphasize the utilization of these molecular profiles in clinical practice. These findings, in the context of machine learning and precision medicine, may help to overcome some of the barriers encountered for implementing molecular profiles of tumors into the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Chaston Weaver
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA 30912, USA
| | - Khaled Bin Satter
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA 30912, USA
| | - Katherine P. Richardson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA 30912, USA
- Department of Interdisciplinary Health Science, College of Allied Health Sciences, Augusta University, 1120 15th St., Augusta, GA 30912, USA
| | - Lynn K. H. Tran
- Department of Urology, Baylor College of Medicine, Houston, TX 76798, USA
| | - Paul M. H. Tran
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA 30912, USA
- Department of Interdisciplinary Health Science, College of Allied Health Sciences, Augusta University, 1120 15th St., Augusta, GA 30912, USA
- Department of Undergraduate Health Professionals, College of Allied Health Sciences, Augusta University, 1120 15th St., Augusta, GA 30912, USA
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
3
|
Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes 2022; 10:proteomes10030024. [PMID: 35893765 PMCID: PMC9326686 DOI: 10.3390/proteomes10030024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Renal transplantation is currently the treatment of choice for end-stage kidney disease, enabling a quality of life superior to dialysis. Despite this, all transplanted patients are at risk of allograft rejection processes. The gold-standard diagnosis of graft rejection, based on histological analysis of kidney biopsy, is prone to sampling errors and carries high costs and risks associated with such invasive procedures. Furthermore, the routine clinical monitoring, based on urine volume, proteinuria, and serum creatinine, usually only detects alterations after graft histologic damage and does not differentiate between the diverse etiologies. Therefore, there is an urgent need for new biomarkers enabling to predict, with high sensitivity and specificity, the rejection processes and the underlying mechanisms obtained from minimally invasive procedures to be implemented in routine clinical surveillance. These new biomarkers should also detect the rejection processes as early as possible, ideally before the 78 clinical outputs, while enabling balanced immunotherapy in order to minimize rejections and reducing the high toxicities associated with these drugs. Proteomics of biofluids, collected through non-invasive or minimally invasive analysis, e.g., blood or urine, present inherent characteristics that may provide biomarker candidates. The current manuscript reviews biofluids proteomics toward biomarkers discovery that specifically identify subclinical, acute, and chronic immune rejection processes while allowing for the discrimination between cell-mediated or antibody-mediated processes. In time, these biomarkers will lead to patient risk stratification, monitoring, and personalized and more efficient immunotherapies toward higher graft survival and patient quality of life.
Collapse
|
4
|
Sheng X, Tanaka M, Katagihara R, Hashimoto M, Nagaoka S, Matsui T. Novel Approach for Simultaneous Analysis of Peptide Metabolites from Orally Administered Glycinin in Rat Bloodstream by Coumarin-Tagged MALDI-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14840-14848. [PMID: 34860514 DOI: 10.1021/acs.jafc.1c05791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lack of an appropriate analytical approach characterizing metabolites from dietary proteins may prevent further studies that could clarify their health benefits. In this study, we attempted to establish a novel analytical assay of peptide metabolites from glycinin using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), in combination with the amine derivatization technique with coumarin (Cou). Cou (30 mmol/L) derivatization of peptides under rapid (30 min) and mild (25 °C, pH 8.5) conditions caused higher MS detection of the peptides as compared to nonderivatized peptides. In addition, an MS shift of the target by Cou derivatization (+202.0 m/z) can help to easily discriminate peptide metabolites in glycinin-administered blood, by comparing the MALDI-MS spectra of Cou-derivatized plasma with those of preadministered blood. After the oral administration of glycinin (100 mg/kg) to Sprague-Dawley rats, 15 di- to tetrapeptides were successfully characterized as glycinin-derived metabolites, demonstrating that the proposed Cou-tagged MALDI-MS is an appropriate characterization technique for peptide metabolites.
Collapse
Affiliation(s)
- Xiaojing Sheng
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Risa Katagihara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Marika Hashimoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Zhao X, Zhang W, Liu T, Dong H, Huang J, Sun C, Wang G, Qian X, Qin W. A fast sample processing strategy for large-scale profiling of human urine phosphoproteome by mass spectrometry. Talanta 2018; 185:166-173. [DOI: 10.1016/j.talanta.2018.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/23/2022]
|
6
|
Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics 2017; 13:609-26. [PMID: 27232439 DOI: 10.1080/14789450.2016.1190651] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Urine is a highly desirable biospecimen for biomarker analysis because it can be collected recurrently by non-invasive techniques, in relatively large volumes. Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect, at a given time point, an individual's metabolic and pathophysiologic state. AREAS COVERED High-resolution mass spectrometry, coupled with state of the art fractionation systems are revealing the plethora of diagnostic/prognostic proteomic information existing within urinary exosomes, glycoproteins, and proteins. Affinity capture pre-processing techniques such as combinatorial peptide ligand libraries and biomarker harvesting hydrogel nanoparticles are enabling measurement/identification of previously undetectable urinary proteins. Expert commentary: Future challenges in the urinary proteomics field include a) defining either single or multiple, universally applicable data normalization methods for comparing results within and between individual patients/data sets, and b) defining expected urinary protein levels in healthy individuals.
Collapse
Affiliation(s)
- Michael Harpole
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Justin Davis
- b Department of Chemistry/Biochemistry , George Mason University , Manassas , VA , USA
| | - Virginia Espina
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
7
|
Christians U, Klawitter J, Klepacki J, Klawitter J. The Role of Proteomics in the Study of Kidney Diseases and in the Development of Diagnostic Tools. BIOMARKERS OF KIDNEY DISEASE 2017:119-223. [DOI: 10.1016/b978-0-12-803014-1.00004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Chinello C, L'imperio V, Stella M, Smith AJ, Bovo G, Grasso A, Grasso M, Raimondo F, Pitto M, Pagni F, Magni F. The proteomic landscape of renal tumors. Expert Rev Proteomics 2016; 13:1103-1120. [PMID: 27748142 DOI: 10.1080/14789450.2016.1248415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is the most fatal of the common urologic cancers, with approximately 35% of patients dying within 5 years following diagnosis. Therefore, there is a need for non-invasive markers that are capable of detecting and determining the severity of small renal masses at an early stage in order to tailor treatment and follow-up. Proteomic studies have proved to be very useful in the study of tumors. Areas covered: In this review, we will detail the current knowledge obtained by the different proteomic approaches, focusing on MS-based strategies, used to investigate RCC biology in order to identify diagnostic, prognostic and predictive biomarkers on tissue, cultured cells and biological fluids. Expert commentary: Currently, no reliable biomarkers or targets for RCC have been translated into the clinical setting. Moreover, despite the efforts of proteomics and other -omics disciplines, only a small number of them have been observed as shared targets between the different analytical platforms and biological specimens. The difficulty to define a specific molecular pattern for RCC and its subtypes highlights a peculiar profile and a heterogeneity that must be taken into account in future studies.
Collapse
Affiliation(s)
- Clizia Chinello
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Vincenzo L'imperio
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Martina Stella
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Andrew James Smith
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Giorgio Bovo
- b Pathology unit , San Gerardo Hospital , Monza , Italy
| | - Angelica Grasso
- c Department of Specialistic Surgical Sciences, Urology unit , Ospedale Maggiore Policlinico Foundation , Milano , Italy
| | - Marco Grasso
- d Department of Urology , San Gerardo Hospital , Monza , Italy
| | - Francesca Raimondo
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Marina Pitto
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fabio Pagni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fulvio Magni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| |
Collapse
|
9
|
Sun X, Zhang H, Luo L, Zhong K, Ma Y, Fan L, Fu D, Wan L. Comparative proteomic profiling identifies potential prognostic factors for human clear cell renal cell carcinoma. Oncol Rep 2016; 36:3131-3138. [PMID: 27748938 PMCID: PMC5112614 DOI: 10.3892/or.2016.5159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
The identification of markers for disease diagnostic, prognostic, or predictive purposes will have a great effect in improving patient management. Proteomic‑based approaches for biomarker discovery are promising strategies used in cancer research. In this study, we performed quantitative proteomic analysis on four patients including clear cell renal cell carcinoma (ccRCC) and paired adjacent non‑cancerous renal tissues using label‑free quantitative proteomics and liquid chromatography‑tandem mass spectrometry (LC‑MS/MS) to identify differentially expressed proteins. Among 3,061 identified non‑redundant proteins, we found that 210 proteins were differentially expressed (83 overexpressed and 127 underexpressed) in ccRCC tissue when compared with normal kidney tissues. Two most significantly dysregulated proteins (PCK1 and SNRPF) were chosen to be confirmed by western blotting. Pathway analysis of 210 differentially expressed proteins showed that dysregulated proteins are related to many cancer‑related biological processes such as oxidative phosphorylation, glycolysis and amino acid synthetic pathways. Online survival analysis indicated the prognostic value of these dysregulated proteins. In conclusion, we identified some potential diagnostic biomarkers for ccRCC and an in‑depth understanding of their involved biological pathways may help pave the way to discover new therapeutic strategies for ccRCC.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongwei Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Shanghai Jiao Tong University School of Medicine/Chinese Academy of Sciences, Shanghai 200025, P.R. China
| | - Longhua Luo
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Kezhao Zhong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yushui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Linlin Fan
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lijuan Wan
- The Second Department of Internal Medicine, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
10
|
Raimondo F, Cerra D, Magni F, Pitto M. Urinary proteomics for the study of genetic kidney diseases. Expert Rev Proteomics 2016; 13:309-24. [DOI: 10.1586/14789450.2016.1136218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Chinello C, Cazzaniga M, De Sio G, Smith AJ, Grasso A, Rocco B, Signorini S, Grasso M, Bosari S, Zoppis I, Mauri G, Magni F. Tumor size, stage and grade alterations of urinary peptidome in RCC. J Transl Med 2015; 13:332. [PMID: 26482227 PMCID: PMC4617827 DOI: 10.1186/s12967-015-0693-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/10/2015] [Indexed: 01/23/2023] Open
Abstract
Background Several promising biomarkers have been found for RCC, but none of them has been used in clinical practice for predicting tumour progression. The most widely used features for predicting tumour aggressiveness still remain the cancer stage, size and grade. Therefore, the aim of our study is to investigate the urinary peptidome to search and identify peptides whose concentrations in urine are linked to tumour growth measure and clinical data. Methods A proteomic approach applied to ccRCC urinary peptidome (n = 117) based on prefractionation with activated magnetic beads followed by MALDI-TOF profiling was used. A systematic correlation study was performed on urinary peptide profiles obtained from MS analysis. Peptide identity was obtained by LC–ESI–MS/MS. Results Fifteen, twenty-six and five peptides showed a statistically significant alteration of their urinary concentration according to tumour size, pT and grade, respectively. Furthermore, 15 and 9 signals were observed to have urinary levels statistically modified in patients at different pT or grade values, even at very early stages. Among them, C1RL, A1AGx, ZAG2G, PGBM, MMP23, GP162, ADA19, G3P, RSPH3, DREB, NOTC2 SAFB2 and CC168 were identified. Conclusions We identified several peptides whose urinary abundance varied according to tumour size, stage and grade. Among them, several play a possible role in tumorigenesis, progression and aggressiveness. These results could be a useful starting point for future studies aimed at verifying their possible use in the managements of RCC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0693-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clizia Chinello
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| | - Marta Cazzaniga
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| | - Gabriele De Sio
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| | - Andrew James Smith
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| | - Angelica Grasso
- Urology Unit, Department of Specialistic Surgical Sciences, Ospedale Maggiore Policlinico Foundation, Milan, Italy.
| | - Bernardo Rocco
- Urology Unit, Department of Specialistic Surgical Sciences, Ospedale Maggiore Policlinico Foundation, Milan, Italy.
| | | | - Marco Grasso
- Department of Surgical Pathology, Cytology, Medical Genetics and Nephropathology, Azienda Ospedaliera San Gerardo, Monza, Italy.
| | - Silvano Bosari
- Department of Medicine, Surgery and Dental Sciences, Pathology Unit, IRCCS-Policlinico Foundation, Mangiagalli and Regina Elena, University of Milan, Milan, Italy.
| | - Italo Zoppis
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy.
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy.
| | - Fulvio Magni
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| |
Collapse
|
12
|
Raimondo F, Corbetta S, Savoia A, Chinello C, Cazzaniga M, Rocco F, Bosari S, Grasso M, Bovo G, Magni F, Pitto M. Comparative membrane proteomics: a technical advancement in the search of renal cell carcinoma biomarkers. MOLECULAR BIOSYSTEMS 2015; 11:1708-16. [DOI: 10.1039/c5mb00020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Set-up of a specific protocol for membrane protein analysis, applied to label free, comparative proteomics of renal cell carcinoma microdomains.
Collapse
Affiliation(s)
| | | | - Andrea Savoia
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Clizia Chinello
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Marta Cazzaniga
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Francesco Rocco
- Department of Specialistic Surgical Sciences
- Urology unit
- Ospedale Maggiore Policlinico Foundation
- IRCCS
- Milano
| | - Silvano Bosari
- Department of Medicine
- Surgery and Dental Sciences
- Pathology Unit
- Ospedale Maggiore Policlinico Foundation Milano
- IRCCS
| | - Marco Grasso
- Department of Surgical Pathology
- Cytology
- Medical Genetics and Nephropathology
- Azienda Ospedaliera San Gerardo
- Monza
| | - Giorgio Bovo
- Department of Surgical Pathology
- Cytology
- Medical Genetics and Nephropathology
- Azienda Ospedaliera San Gerardo
- Monza
| | - Fulvio Magni
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Marina Pitto
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| |
Collapse
|