1
|
Andraski AB, Sacks FM, Aikawa M, Singh SA. Understanding HDL Metabolism and Biology Through In Vivo Tracer Kinetics. Arterioscler Thromb Vasc Biol 2024; 44:76-88. [PMID: 38031838 PMCID: PMC10842918 DOI: 10.1161/atvbaha.123.319742] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
HDL (high-density lipoprotein), owing to its high protein content and small size, is the densest circulating lipoprotein. In contrast to lipid-laden VLDL (very-low-density lipoprotein) and LDL (low-density lipoprotein) that promote atherosclerosis, HDL is hypothesized to mitigate atherosclerosis via reverse cholesterol transport, a process that entails the uptake and clearance of excess cholesterol from peripheral tissues. This process is mediated by APOA1 (apolipoprotein A-I), the primary structural protein of HDL, as well as by the activities of additional HDL proteins. Tracer-dependent kinetic studies are an invaluable tool to study HDL-mediated reverse cholesterol transport and overall HDL metabolism in humans when a cardiovascular disease therapy is investigated. Unfortunately, HDL cholesterol-raising therapies have not been successful at reducing cardiovascular events suggesting an incomplete picture of HDL biology. However, as HDL tracer studies have evolved from radioactive isotope- to stable isotope-based strategies that in turn are reliant on mass spectrometry technologies, the complexity of the HDL proteome and its metabolism can be more readily addressed. In this review, we outline the motivations, timelines, advantages, and disadvantages of the various tracer kinetics strategies. We also feature the metabolic properties of select HDL proteins known to regulate reverse cholesterol transport, which in turn underscore that HDL lipoproteins comprise a heterogeneous particle population whose distinct protein constituents and kinetics likely determine its function and potential contribution to cholesterol clearance.
Collapse
Affiliation(s)
- Allison B. Andraski
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Lee LH, Halu A, Morgan S, Iwata H, Aikawa M, Singh SA. XINA: A Workflow for the Integration of Multiplexed Proteomics Kinetics Data with Network Analysis. J Proteome Res 2019; 18:775-781. [PMID: 30370770 DOI: 10.1021/acs.jproteome.8b00615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Quantitative proteomics experiments, using for instance isobaric tandem mass tagging approaches, are conducive to measuring changes in protein abundance over multiple time points in response to one or more conditions or stimulations. The aim is often to determine which proteins exhibit similar patterns within and across experimental conditions, since proteins with coabundance patterns may have common molecular functions related to a given stimulation. In order to facilitate the identification and analyses of coabundance patterns within and across conditions, we previously developed a software inspired by the isobaric mass tagging method itself. Specifically, multiple data sets are tagged in silico and combined for subsequent subgrouping into multiple clusters within a single output depicting the variation across all conditions, converting a typical inter-data-set comparison into an intra-data-set comparison. An updated version of our software, XINA, not only extracts coabundance profiles within and across experiments but also incorporates protein-protein interaction databases and integrative resources such as KEGG to infer interactors and molecular functions, respectively, and produces intuitive graphical outputs. In this report, we compare the kinetics profiles of >5600 unique proteins derived from three macrophage cell culture experiments and demonstrate through intuitive visualizations that XINA identifies key regulators of macrophage activation via their coabundance patterns.
Collapse
Affiliation(s)
- Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Arda Halu
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
- Channing Division of Network Medicine , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Stephanie Morgan
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Hiroshi Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
- Channing Division of Network Medicine , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
- Center for Excellence in Vascular Biology , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division , Brigham and Women's Hospital , Harvard Medical School, Boston , Massachusetts 02115 , United States
| |
Collapse
|
3
|
Mourino-Alvarez L, Baldan-Martin M, Rincon R, Martin-Rojas T, Corbacho-Alonso N, Sastre-Oliva T, Barderas MG. Recent advances and clinical insights into the use of proteomics in the study of atherosclerosis. Expert Rev Proteomics 2017; 14:701-713. [PMID: 28689450 DOI: 10.1080/14789450.2017.1353912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The application of new proteomics methods may help to identify new diagnostic/predictive molecular markers in an attempt to improve the clinical management of atherosclerosis. Areas covered: Technological advances in proteomics have enhanced its sensitivity and multiplexing capacity, as well as the possibility of studying protein interactions and tissue structure. These advances will help us better understand the molecular mechanisms at play in atherosclerosis as a biological system. Moreover, this should help identify new predictive/diagnostic biomarkers and therapeutic targets that may facilitate effective risk stratification and early diagnosis, with the ensuing rapid implementation of treatment. This review provides a comprehensive overview of the novel methods in proteomics, including state-of-the-art techniques, novel biological samples and applications for the study of atherosclerosis. Expert commentary: Collaboration between clinicians and researchers is crucial to further validate and introduce new molecular markers to manage atherosclerosis that are identified using the most up to date proteomic approaches.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | | | - Raul Rincon
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tatiana Martin-Rojas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Nerea Corbacho-Alonso
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tamara Sastre-Oliva
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Maria G Barderas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. RECENT FINDINGS Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. SUMMARY Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.
Collapse
Affiliation(s)
- Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Singh SA, Aikawa E, Aikawa M. Current Trends and Future Perspectives of State-of-the-Art Proteomics Technologies Applied to Cardiovascular Disease Research. Circ J 2016; 80:1674-83. [PMID: 27430298 DOI: 10.1253/circj.cj-16-0499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of mass spectrometry (MS)-dependent protein research is increasing in the cardiovascular sciences. A major reason for this is the versatility of and ability for MS technologies to accommodate a variety of biological questions such as those pertaining to basic research and clinical applications. In addition, mass spectrometers are becoming easier to operate, and require less expertise to run standard proteomics experiments. Nonetheless, despite the increasing interest in proteomics, many non-expert end users may not be as familiar with the variety of mass spectrometric tools and workflows available to them. We therefore review the major strategies used in unbiased and targeted MS, while providing specific applications in cardiovascular research. Because MS technologies are developing rapidly, it is important to understand the core concepts, strengths and weaknesses. Most importantly, we hope to inspire the further integration of this exciting technology into everyday research in the cardiovascular sciences. (Circ J 2016; 80: 1674-1683).
Collapse
Affiliation(s)
- Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School
| | | | | |
Collapse
|
6
|
Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, Kjolby M, Rogers M, Michel T, Shibasaki M, Hagita S, Kramann R, Rader DJ, Libby P, Singh SA, Aikawa E. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest 2016; 126:1323-36. [PMID: 26950419 DOI: 10.1172/jci80851] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2016] [Indexed: 12/23/2022] Open
Abstract
Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation of sortilin. In a murine model, Sort1-deficiency reduced arterial calcification but did not affect bone mineralization. Additionally, transfer of sortilin-deficient BM cells to irradiated atherosclerotic mice did not affect vascular calcification, indicating a primary role of SMC-derived sortilin. Together, the results of this study identify sortilin phosphorylation as a potential therapeutic target for ectopic calcification/microcalcification and may clarify the mechanism that underlies the genetic association between the SORT1 gene locus and coronary artery calcification.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Alkaline Phosphatase/biosynthesis
- Alkaline Phosphatase/genetics
- Animals
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Casein Kinase I/genetics
- Casein Kinase I/metabolism
- Casein Kinase II/metabolism
- Cell-Derived Microparticles/genetics
- Cell-Derived Microparticles/metabolism
- Cells, Cultured
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Protein Transport
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/metabolism
Collapse
|
7
|
Singh SA, Andraski AB, Pieper B, Goh W, Mendivil CO, Sacks FM, Aikawa M. Multiple apolipoprotein kinetics measured in human HDL by high-resolution/accurate mass parallel reaction monitoring. J Lipid Res 2016; 57:714-28. [PMID: 26862155 DOI: 10.1194/jlr.d061432] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 01/10/2023] Open
Abstract
Endogenous labeling with stable isotopes is used to study the metabolism of proteins in vivo. However, traditional detection methods such as GC/MS cannot measure tracer enrichment in multiple proteins simultaneously, and multiple reaction monitoring MS cannot measure precisely the low tracer enrichment in slowly turning-over proteins as in HDL. We exploited the versatility of the high-resolution/accurate mass (HR/AM) quadrupole Orbitrap for proteomic analysis of five HDL sizes. We identified 58 proteins in HDL that were shared among three humans and that were organized into five subproteomes according to HDL size. For seven of these proteins, apoA-I, apoA-II, apoA-IV, apoC-III, apoD, apoE, and apoM, we performed parallel reaction monitoring (PRM) to measure trideuterated leucine tracer enrichment between 0.03 to 1.0% in vivo, as required to study their metabolism. The results were suitable for multicompartmental modeling in all except apoD. These apolipoproteins in each HDL size mainly originated directly from the source compartment, presumably the liver and intestine. Flux of apolipoproteins from smaller to larger HDL or the reverse contributed only slightly to apolipoprotein metabolism. These novel findings on HDL apolipoprotein metabolism demonstrate the analytical breadth and scope of the HR/AM-PRM technology to perform metabolic research.
Collapse
Affiliation(s)
- Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Allison B Andraski
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Brett Pieper
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wilson Goh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Frank M Sacks
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|