1
|
Navarro-Compán V, Puig L, Vidal S, Ramírez J, Llamas-Velasco M, Fernández-Carballido C, Almodóvar R, Pinto JA, Galíndez-Aguirregoikoa E, Zarco P, Joven B, Gratacós J, Juanola X, Blanco R, Arias-Santiago S, Sanz Sanz J, Queiro R, Cañete JD. The paradigm of IL-23-independent production of IL-17F and IL-17A and their role in chronic inflammatory diseases. Front Immunol 2023; 14:1191782. [PMID: 37600764 PMCID: PMC10437113 DOI: 10.3389/fimmu.2023.1191782] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023] Open
Abstract
Interleukin-17 family (IL-17s) comprises six structurally related members (IL-17A to IL-17F); sequence homology is highest between IL-17A and IL-17F, displaying certain overlapping functions. In general, IL-17A and IL-17F play important roles in chronic inflammation and autoimmunity, controlling bacterial and fungal infections, and signaling mainly through activation of the nuclear factor-kappa B (NF-κB) pathway. The role of IL-17A and IL-17F has been established in chronic immune-mediated inflammatory diseases (IMIDs), such as psoriasis (PsO), psoriatic arthritis (PsA), axial spondylarthritis (axSpA), hidradenitis suppurativa (HS), inflammatory bowel disease (IBD), multiple sclerosis (MS), and asthma. CD4+ helper T cells (Th17) activated by IL-23 are well-studied sources of IL-17A and IL-17F. However, other cellular subtypes can also produce IL-17A and IL-17F, including gamma delta (γδ) T cells, alpha beta (αβ) T cells, type 3 innate lymphoid cells (ILC3), natural killer T cells (NKT), or mucosal associated invariant T cells (MAIT). Interestingly, the production of IL-17A and IL-17F by innate and innate-like lymphocytes can take place in an IL-23 independent manner in addition to IL-23 classical pathway. This would explain the limitations of the inhibition of IL-23 in the treatment of patients with certain rheumatic immune-mediated conditions such as axSpA. Despite their coincident functions, IL-17A and IL-17F contribute independently to chronic tissue inflammation having somehow non-redundant roles. Although IL-17A has been more widely studied, both IL-17A and IL-17F are overexpressed in PsO, PsA, axSpA and HS. Therefore, dual inhibition of IL-17A and IL-17F could provide better outcomes than IL-23 or IL-17A blockade.
Collapse
Affiliation(s)
| | - Luis Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Immunology-Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Julio Ramírez
- Arthritis Unit, Department of Rheumatology, Hospital Clínic and Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Llamas-Velasco
- Department of Dermatology, Hospital Universitario La Princesa, Madrid, Spain
| | | | - Raquel Almodóvar
- Department of Rheumatology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - José Antonio Pinto
- Department of Rheumatology, Complejo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | | | - Pedro Zarco
- Department of Rheumatology, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Beatriz Joven
- Department of Rheumatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jordi Gratacós
- Department of Rheumatology, Medicine Department Autonomus University of Barcelona (UAB), I3PT, University Hospital Parc Taulí Sabadell, Barcelona, Spain
| | - Xavier Juanola
- Department of Rheumatology, University Hospital Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Salvador Arias-Santiago
- Department of Dermatology, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Dermatology, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Jesús Sanz Sanz
- Department of Rheumatology, Hospital Universitario Puerta del Hierro Majadahonda, Madrid, Spain
| | - Rubén Queiro
- Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Juan D. Cañete
- Arthritis Unit, Department of Rheumatology, Hospital Clínic and Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
2
|
Li H, Zhan H, Cheng L, Yan S, Wang L, Li Y. Imbalanced distribution of group 2 innate lymphoid cells (ILCs) and ILC precursors in peripheral blood of patients with primary biliary cholangitis. Scand J Immunol 2022; 96:e13166. [PMID: 35315090 DOI: 10.1111/sji.13166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Innate lymphoid cells (ILCs), a novel group of innate immune cells, play a key role in the early immune response via rapidly reacting to signals expressed by tissue-resident cells. ILCs contribute to some autoimmune diseases. We aim to investigate the proportions of circulating ILC subgroups in patients with primary biliary cholangitis (PBC). Overall, 48 patients with PBC and 24 healthy controls (HCs) were enrolled. Circulating ILCs and cytokine production were detected by flow cytometry. The proportions of total ILCs, ILC precursors (ILCPs), and ILCP/ILC2 ratio increased and that of ILC2s decreased in patients with PBC. ILC2 proportion was negatively correlated with gamma-glutamyl transpeptidase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). The proportion of ILCPs and ILCP/ILC2 ratio were positively correlated with alkaline phosphatase, GGT, ALT, and AST. ILC2 proportion was significantly decreased in the ursodeoxycholic acid (UDCA) -non-responder group compared with the UDCA-responder group, whereas the proportion of ILCPs and ILCP/ILC2 were ratio significantly increased. The proportions of CD38+ ILC2s, CD38+ ILCPs, CD45RO+ ILC2s, and CD45RO+ ILCPs were significantly higher in patients with PBC than in HCs. Levels of IL-17A producing ILCs were higher in patients with PBC than in HCs. PBC is accompanied by alterations in circulating ILCs. The proportions of ILC2s, ILCPs, and ILCP/ILC2 ratio were associated with the PBC disease activity. The proportions of ILCPs and ILCP/ILC2 ratio may reflect the UDCA treatment failure in patients with PBC. ILC2s and ILCPs from patients with PBC get activated, these cells may be involved in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Wang
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Zou H, Yang N, Zhang X, Chen HW. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases. Biochem Pharmacol 2022; 196:114725. [PMID: 34384758 DOI: 10.1016/j.bcp.2021.114725] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Aberrant cholesterol metabolism and homeostasis in the form of elevated cholesterol biosynthesis and dysregulated efflux and metabolism is well recognized as a major feature of metabolic reprogramming in solid tumors. Recent studies have emphasized on major drivers and regulators such as Myc, mutant p53, SREBP2, LXRs and oncogenic signaling pathways that play crucial roles in tumor cholesterol metabolic reprogramming. Therapeutics such as statins targeting the mevalonate pathway were tried at the clinic without showing consistent benefits to cancer patients. Nuclear receptors are prominent regulators of mammalian metabolism. Their de-regulation often drives tumorigenesis. RORγ and its immune cell-specific isoform RORγt play important functions in control of mammalian metabolism, circadian rhythm and immune responses. Although RORγ, together with its closely related members RORα and RORβ were identified initially as orphan receptors, recent studies strongly support the conclusion that specific intermediates and metabolites of cholesterol pathways serve as endogenous ligands of RORγ. More recent studies also reveal a critical role of RORγ in tumorigenesis through major oncogenic pathways including acting a new master-like regulator of tumor cholesterol biosynthesis program. Importantly, an increasing number of RORγ orthosteric and allosteric ligands are being identified that display potent activities in blocking tumor growth and autoimmune disorders in preclinical models. This review summarizes the recent preclinical and clinical progress on RORγ with emphasis on its role in reprogramming tumor cholesterol metabolism and its regulation. It will also discuss RORγ functional mechanisms, context-specificity and its value as a therapeutic target for effective cancer treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Nianxin Yang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA; UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA; VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
4
|
Kong WS, Tsuyama N, Inoue H, Guo Y, Mokuda S, Nobukiyo A, Nakatani N, Yamaide F, Nakano T, Kohno Y, Ikeda K, Nakanishi Y, Ohno H, Arita M, Shimojo N, Kanno M. Long-chain saturated fatty acids in breast milk are associated with the pathogenesis of atopic dermatitis via induction of inflammatory ILC3s. Sci Rep 2021; 11:13109. [PMID: 34162906 PMCID: PMC8222289 DOI: 10.1038/s41598-021-92282-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Breastfeeding influences the immune system development in infants and may even affect various immunological responses later in life. Breast milk provides a rich source of early nutrition for infant growth and development. However, the presence of certain compounds in breast milk, related to an unhealthy lifestyle or the diet of lactating mothers, may negatively impact infants. Based on a cohort study of atopic dermatitis (AD), we find the presence of damage-associated molecular patterns (DAMPs) activity in the mother's milk. By non-targeted metabolomic analysis, we identify the long-chain saturated fatty acids (LCSFA) as a biomarker DAMPs (+) breast milk samples. Similarly, a mouse model in which breastfed offspring are fed milk high in LCSFA show AD onset later in life. We prove that LCSFA are a type of damage-associated molecular patterns, which initiate a series of inflammatory events in the gut involving type 3 innate lymphoid cells (ILC3s). A remarkable increase in inflammatory ILC3s is observed in the gut, and the migration of these ILC3s to the skin may be potential triggers of AD. Gene expression analysis of ILC3s isolated from the gut reveal upregulation of genes that increase ILC3s and chemokines/chemokine receptors, which may play a role in ILC migration to the skin. Even in the absence of adaptive immunity, Rag1 knockout mice fed a high-LCSFA milk diet develop eczema, accompanied by increased gut ILC3s. We also present that gut microbiota of AD-prone PA milk-fed mice is different from non-AD OA/ND milk-fed mice. Here, we propose that early exposure to LCSFAs in infants may affect the balance of intestinal innate immunity, inducing a highly inflammatory environment with the proliferation of ILC3s and production of interleukin-17 and interleukin-22, these factors may be potential triggers or worsening factors of AD.
Collapse
Affiliation(s)
- Weng Sheng Kong
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohiro Tsuyama
- Analytical Molecular Medicine and Devices Laboratory, Hiroshima University, Hiroshima, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima, Japan
| | - Hiroko Inoue
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Sho Mokuda
- Department of Clinical Immunology and Rheumatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Asako Nobukiyo
- Natural Science Centre for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | | | - Fumiya Yamaide
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Taiji Nakano
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichi Kohno
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba Rosai Hospital, Chiba, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- AMED-CREST Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- AMED-CREST Japan Agency for Medical Research and Development, Tokyo, Japan
- Center for Preventive Medicine, Chiba University, Chiba, Japan
| | - Masamoto Kanno
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- AMED-SENTAN, Tokyo, Japan.
- AMED-CREST Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
5
|
Fitzpatrick AM, Chipps BE, Holguin F, Woodruff PG. T2-"Low" Asthma: Overview and Management Strategies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:452-463. [PMID: 32037109 DOI: 10.1016/j.jaip.2019.11.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Although the term "asthma" has been applied to all patients with airway lability and variable chest symptoms for centuries, phenotypes of asthma with distinct clinical and molecular features that may warrant different treatment approaches are well recognized. Patients with type 2 (T2)-"high" asthma are characterized by upregulation of T2 immune pathways (ie, IL-4 and IL-13 gene sets) and eosinophilic airway inflammation, whereas these features are absent in patients with T2-"low" asthma and may contribute to poor responsiveness to corticosteroid treatment. This review details definitions and clinical features of T2-"low" asthma, potential mechanisms and metabolic aspects, pediatric considerations, and potential treatment approaches. Priority research questions for T2-"low" asthma are also discussed.
Collapse
Affiliation(s)
| | - Bradley E Chipps
- Capital Allergy and Respiratory Disease Center, Sacramento, Calif
| | - Fernando Holguin
- University of Colorado, Pulmonary Sciences and Critical Care Medicine, Denver, Colo
| | - Prescott G Woodruff
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and the Cardiovascular Research Institute, University of California, San Francisco, Calif
| |
Collapse
|
6
|
Jetten AM, Cook DN. (Inverse) Agonists of Retinoic Acid-Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease. Annu Rev Pharmacol Toxicol 2019; 60:371-390. [PMID: 31386594 DOI: 10.1146/annurev-pharmtox-010919-023711] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retinoic acid-related orphan receptor γt (RORγt) functions as a ligand-dependent transcription factor that regulates multiple proinflammatory genes and plays a critical role in several inflammatory and autoimmune diseases. Various endogenous and synthetic RORγ (inverse) agonists have been identified that regulate RORγ transcriptional activity, including many cholesterol intermediates and oxysterols. Changes in cholesterol biosynthesis and metabolism can therefore have a significant impact on the generation of oxysterol RORγ ligands and, consequently, can control RORγt activity and inflammation. These observations contribute to a growing literature that connects cholesterol metabolism to the regulation of immune responses and autoimmune disease. Loss of RORγ function in knockout mice and in mice treated with RORγ inverse agonists results in reduced production of proinflammatory cytokines, such as IL-17A/F, and increased resistance to autoimmune disease in several experimental rodent models. Thus, RORγt inverse agonists might provide an attractive therapeutic approach to treat a variety of autoimmune diseases.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA;
| | - Donald N Cook
- Immunogenetics Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
7
|
Bonne-Année S, Nutman TB. Human innate lymphoid cells (ILCs) in filarial infections. Parasite Immunol 2018; 40:10.1111/pim.12442. [PMID: 28504838 PMCID: PMC5685925 DOI: 10.1111/pim.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections.
Collapse
Affiliation(s)
- S Bonne-Année
- Laboratory of Parasitic Diseases, Helminth Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - T B Nutman
- Laboratory of Parasitic Diseases, Helminth Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Mohammadi H, Sharafkandi N, Hemmatzadeh M, Azizi G, Karimi M, Jadidi-Niaragh F, Baradaran B, Babaloo Z. The role of innate lymphoid cells in health and disease. J Cell Physiol 2018; 233:4512-4529. [PMID: 29058773 DOI: 10.1002/jcp.26250] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) are kind of innate immune cells which can be divided into three main subsets according to their cytokine release profile, transcription factors, and surface markers. ILCs affect the initial stages of immunity in response to microbes and participate in immunity, inflammation, and tissue repair. ILCs modulate immunity through resistance to the pathogens and regulation of autoimmune inflammation and metabolic homeostasis. Therefore dysregulation of ILCs may lead to chronic pathologies such as allergies (i.e., asthma), inflammation (i.e., inflammatory bowel disease), and autoimmunity (i.e., psoriasis, atopic dermatitis, rheumatoid arthritis, multiple sclerosis, and ankylosing spondylitis). Regarding the critical role of ILCs in the regulation of immune system, the elucidation of their function in different conditions makes an interesting target for improvement of novel therapeutic approach to modulate an immune response in different disease context.
Collapse
Affiliation(s)
- Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Rezaei S, Rezaei N, Mahmoudi M, Aryan Z. Is there sufficient evidence to support the use of vitamin supplements in the asthmatic patient? Expert Rev Respir Med 2017; 11:851-853. [PMID: 28933228 DOI: 10.1080/17476348.2017.1383897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shahabeddin Rezaei
- a Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran.,b Students' Scientific Research Center , Tehran University of Medical Sciences , Tehran , Iran.,c Dietitians and Nutrition Experts Team (DiNET) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Nima Rezaei
- d Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,e Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Maryam Mahmoudi
- a Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran.,c Dietitians and Nutrition Experts Team (DiNET) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Zahra Aryan
- d Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,e Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
10
|
Kim KH, Kim DH, Jeong HJ, Ryu JS, Kim YJ, Oh JY, Kim MK, Wee WR. Effects of subconjunctival administration of anti-high mobility group box 1 on dry eye in a mouse model of Sjӧgren's syndrome. PLoS One 2017; 12:e0183678. [PMID: 28837629 PMCID: PMC5570279 DOI: 10.1371/journal.pone.0183678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose Extracellular high mobility group box 1 (HMGB1) acts as a damage associated molecular pattern molecule through the Toll-like receptor to promote autoreactive B cell activation, which may be involved in the pathogenesis of Sjӧgren’s syndrome. The aim of this study was to investigate the effect of subconjunctival administration of anti-HMGB1 on dry eye in a mouse model of Sjӧgren’s syndrome. Methods Ten weeks-old NOD.B10.H2b mice were subconjunctivally injected with 0.02 to 2 μg of anti-HMGB1 antibodies or PBS twice a week for two consecutive weeks. Tear volume and corneal staining scores were measured and compared between before- and after-treatment. Goblet cell density was counted in PAS stained forniceal conjunctiva and inflammatory foci score (>50 cells/focus) was measured in extraorbital glands. Flow cytometry was performed to evaluate the changes in BrdU+ cells, IL-17-, IL-10-, or IFNγ-secreting cells, functional B cells, and IL-22 secreting innate lymphoid cells (ILC3s) in cervical lymph nodes. The level of IL-22 in intraorbital glands was measured by ELISA. Results Injection of 2 μg or 0.02 μg anti-HMGB1 attenuated corneal epithelial erosions and increased tear secretion (p<0.05). Goblet cell density was increased in 0.2 μg and 2 μg anti-HMGB1-treated-mice with marginal significance. The inflammatory foci score, and the number of BrdU+ cells, IL-17-, IL-10-, IFNγ-secreting cells, and functional B cells did not significantly change following anti-HMGB1 treatment. Surprisingly, the percentage of ILC3s was significantly increased in the draining lymph nodes (p<0.05), and the expression of IL-22 was significantly increased in the intraorbital glands (p<0.05) after administration of 2 μg anti-HMGB1. Conclusion This study shows that subconjunctival administration of anti-HMGB1 attenuates clinical manifestations of dry eye. The improvement of dry eye may involve an increase of ILC3s, rather than modulation of B or plasma cells, as shown using a mouse model of Sjӧgren’s syndrome.
Collapse
Affiliation(s)
- Kyeong Hwan Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Haeundae Paik Hospital, Busan, Korea
- Department of Ophthalmology, Inje University College of Medicine, Busan, Korea
| | - Dong Hyun Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Gachon University Gil Medical Center, Incheon, Korea
| | - Hyun Jeong Jeong
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Yu Jeong Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| | - Won Ryang Wee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Rodríguez-Carrio J, Hähnlein JS, Ramwadhdoebe TH, Semmelink JF, Choi IY, van Lienden KP, Maas M, Gerlag DM, Tak PP, Geijtenbeek TBH, van Baarsen LGM. Brief Report: Altered Innate Lymphoid Cell Subsets in Human Lymph Node Biopsy Specimens Obtained During the At-Risk and Earliest Phases of Rheumatoid Arthritis. Arthritis Rheumatol 2017; 69:70-76. [PMID: 27428460 PMCID: PMC6681066 DOI: 10.1002/art.39811] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/07/2016] [Indexed: 01/31/2023]
Abstract
Objective Innate lymphoid cells (ILCs) are emerging mediators of immunity, and accumulation of inflammatory ILC populations can occur in inflammatory‐mediated conditions. Since early lymph node (LN) activation has been shown in rheumatoid arthritis (RA), we aimed to investigate the frequency and distribution of ILCs in LN biopsy specimens obtained during the earliest phases of RA. Methods Twelve patients with early RA, 12 individuals with IgM rheumatoid factor and/or anti–citrullinated protein antibodies without arthritis (RA risk group), and 7 healthy controls underwent ultrasound‐guided inguinal LN biopsy. ILC subsets and the expression of vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) by LN endothelial cells and fibroblasts were analyzed by flow cytometry. Results Although no differences in the frequencies of total ILCs (Lin−CD45+/lowCD127+) were found, the distribution of the ILC subpopulations differed among groups. RA patients showed lower numbers of lymphoid tissue–inducer (LTi) cells (c‐Kit+NKp44− ILCs) and increased ILC1 (c‐Kit−NKp44− ILCs) and ILC3 (c‐Kit+NKp44+ ILCs) numbers compared with controls (P < 0.001, P < 0.050, and P < 0.050, respectively). Individuals at risk of RA exhibited an increased frequency of ILC1 compared with controls (P < 0.01). LTi cells paralleled the expression of adhesion molecules on endothelial cells and fibroblasts. Conclusion Our findings indicate that during the at‐risk and earliest phases of RA, the ILC distribution in LN changes from a homeostatic profile toward a more inflammatory profile, thereby providing evidence of a role for ILCs in RA pathogenesis.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, and University of Oviedo, Asturias, Spain
| | - Janine S Hähnlein
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Johanna F Semmelink
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivy Y Choi
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Krijn P van Lienden
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Maas
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Danielle M Gerlag
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul P Tak
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
12
|
Li S, Yang D, Peng T, Wu Y, Tian Z, Ni B. Innate lymphoid cell-derived cytokines in autoimmune diseases. J Autoimmun 2017; 83:62-72. [PMID: 28479212 DOI: 10.1016/j.jaut.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
The most recently recognized types of immune cells, the innate lymphoid cells (ILCs), have been sub-divided according to respective distinct expression profiles of regulatory factors or/and cytokines. ILCs have also been shown to participate in a variety of beneficial immune responses, including participation in attack against pathogens and mediation of the pre-inflammatory and inflammatory responses through their production of pro-inflammatory cytokines. As such, while the ILCs exert protective effects they may also become detrimental upon dysregulation. Indeed, recent studies of the ILCs have revealed a strong association with the advent and pathogenesis of several common autoimmune diseases, including psoriasis, inflammatory bowel disease (IBD) and multiple sclerosis (MS). Though the ILCs belong to lineage negative cells that are distinctive from the Th cells, the profiles of secreted cytokines from the ILCs overlap with those of the corresponding Th subsets. Nevertheless, considering that the ILCs belong to the innate immune system and the Th cells belong to the adaptive immune system, it is expected that the ILCs should function at the early stage of diseases and the Th cells should exert predominant effects at the late stage of diseases. Therefore, it is intriguing to consider targeting of ILCs for therapy by targeting the corresponding cytokines at the early stage of diseases, with the late stage cytokine targeting mainly influencing the Th cells' function. Here, we review the knowledge to date on the roles of ILCs in various autoimmune diseases and discuss their potential as new therapeutic targets.
Collapse
Affiliation(s)
- Sirui Li
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Tingwei Peng
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Toll-like receptors (TLRs) are novel and promising targets for allergen immunotherapy. Bench studies suggest that TLR agonists reduce Th2 responses and ameliorate airway hyper-responsiveness. In addition, clinical trials are at initial phases to evaluate the safety and efficacy of TLR agonists for the allergen immunotherapy of patients with allergic rhinitis and asthma. (Figure is included in full-text article.) RECENT FINDINGS To date, two allergy vaccine-containing TLR agonists have been investigated in clinical trials; Pollinex Quattro and AIC. The former contains monophosphoryl lipid, a TLR4 agonist and the latter contains, CpG motifs activating the TLR9 cascade. Preseasonal subcutaneous injection of both of these allergy vaccines has been safe and efficacious in control of nasal symptoms of patients with allergic rhinitis. CRX-675 (a TLR4 agonist), AZD8848 (a TLR7 agonist), VTX-1463 (a TLR8 agonist) and 1018 ISS and QbG10 (TLR9 agonists) are currently in clinical development for allergic rhinitis and asthma. SUMMARY TLR agonists herald promising results for allergen immunotherapy of patients with allergic rhinitis and asthma. Future research should be directed at utilizing these agents for immunotherapy of food allergy (for instance, peanut allergy) as well.
Collapse
|