1
|
No Evidence that CD33 rs12459419 Polymorphism Predicts Gemtuzumab Ozogamicin Response in Consolidation Treatment of Acute Myeloid Leukemia Patients: Experience of the PETHEMA Group. DISEASE MARKERS 2022; 2022:3132941. [PMID: 36051360 PMCID: PMC9427256 DOI: 10.1155/2022/3132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Gemtuzumab ozogamicin (GO) is a conjugate of a monoclonal antibody and calicheamicin, which has been reapproved for the treatment of acute myeloid leukemia (AML). AML patients with the CD33 rs12459419 CC genotype might benefit from the addition of GO to intensive treatment in contrast to patients with CT/TT genotypes. Nevertheless, contradictory results have been reported. We sought to shed light on the prediction of GO response in AML patients with rs12459419 polymorphism who were treated with GO in the consolidation (n = 70) or reinduction (n = 20) phase. The frequency distribution of the rs12459419 polymorphism in the complete cohort of patients was 44.4% (n = 40), 50% (n = 45), and 5.6% (n = 5) for CC, CT, and TT genotypes, respectively. Regarding the patients treated with GO for consolidation, we performed a Kaplan-Meier analysis of overall survival and relapse-free survival according to the rs12459419 polymorphism (CC vs. CT/TT patients) and genetic risk using the European Leukemia Net (ELN) 2010 risk score. We also carried out a Cox regression analysis for the prediction of overall survival, with age and ELN 2010 as covariates. We found no statistical significance in the univariate or multivariate analysis. Additionally, we performed a global Kaplan-Meier analysis for the patients treated with GO for reinduction and did not find significant differences; however, our cohort was too small to draw any conclusion from this analysis. The use of GO in consolidation treatment is included in the approval of the compound; however, evidence regarding its efficacy in this setting is lacking. Rs12459419 polymorphism could help in the selection of patients who might benefit from GO. Regrettably, in our cohort, the rs12459419 polymorphism does not seem to be an adequate tool for the selection of patients who might benefit from the addition of GO in consolidation cycles.
Collapse
|
2
|
A compound combination screening approach with potential to identify new treatment options for paediatric acute myeloid leukaemia. Sci Rep 2020; 10:18514. [PMID: 33116257 PMCID: PMC7595190 DOI: 10.1038/s41598-020-75453-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Paediatric acute myeloid leukaemia (AML) is a heterogeneous disease characterised by genetics and morphology. The introduction of intensive chemotherapy treatments together with patient stratification and supportive therapy has resulted in a moderate improvement in patient prognosis. However, overall survival rates remain unacceptably poor, with only 65% of patients surviving longer than 5 years. Recently age-specific differences in AML have been identified, highlighting the need for tailored treatments for paediatric patients. Combination therapies have the potential to improve patient prognosis, while minimising harmful side-effects. In the laboratory setting, identifying key combinations from large drug libraries can be resource-intensive, prohibiting discovery and translation into the clinic. To minimise redundancy and maximise discovery, we undertook a multiplex screen of 80 apoptotic-inducing agents in paediatric AML pre-clinical models. The screen was designed using an all-pairs testing algorithm, which ensured that all pairs of compounds could be tested, while minimising the number of wells used. We identified a combination of ABT-737, a Bcl-2 family inhibitor and Purvalanol A, a CDK inhibitor, as a potential targeted therapy for AML patients with an MLL rearrangement and an FLT3-ITD. Our approach has the potential to reduce resource-intensity and time associated with the identification of novel combination therapies.
Collapse
|
3
|
Popescu B, Sheela S, Thompson J, Grasmeder S, Intrater T, DeStefano CB, Hourigan CS, Lai C. Timed sequential salvage chemotherapy for relapsed or refractory acute myeloid leukemia. Clin Hematol Int 2020; 2:27-31. [PMID: 32190831 PMCID: PMC7079712 DOI: 10.2991/chi.d.191128.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/27/2019] [Indexed: 01/12/2023] Open
Abstract
Therapy for those with relapsed or refractory acute myeloid leukemia is suboptimal. Studies have suggested that timed sequential salvage combination cytotoxic chemotherapy may have particular utility for that indication. We report here a series of ten such adult patients treated sequentially at a single center with EMA (cytarabine 500 mg/m2/day as continuous infusion on days 1-3 and days 8-10, mitoxantrone 12 mg/m2/day on days 1-3, and etoposide 200 mg/m2/day as continuous infusion on days 8-10). The overall complete remission rate was 40% (including 3 of 4 of those with relapsed disease) but use of this regimen was associated with prolonged cytopenia and a high rate of infectious adverse events. Even with the availability of modern infectious prophylaxis and therapies, the EMA regimen is likely best reserved for those with relapsed disease treated with curative intent prior to an allogeneic hematopoietic cell transplant.
Collapse
Affiliation(s)
- Bogdan Popescu
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Sheenu Sheela
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Julie Thompson
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Sophia Grasmeder
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Therese Intrater
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Christin B. DeStefano
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | | | | |
Collapse
|
4
|
Modelling the Effects of MCM7 Variants, Somatic Mutations, and Clinical Features on Acute Myeloid Leukemia Susceptibility and Prognosis. J Clin Med 2020; 9:jcm9010158. [PMID: 31936215 PMCID: PMC7020054 DOI: 10.3390/jcm9010158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
The main objective of the study was to evaluate the associations between MCM7 rs2070215, rs1527423, and rs1534309 single nucleotide polymorphisms (SNPs) and acute myeloid leukemia (AML) risk and prognosis. The secondary objectives were to assess if any relationships existed between the mentioned SNPs and FLT3, DNMT3A, NPM1 mutations with clinical outcomes and overall survival (OS) in AML patients. We investigated 281 AML cases and 405 healthy subjects. The results showed a significant association between a variant allele of rs2070215 (p = 0.007), CAT haplotype (p = 0.012), and AML susceptibility. No significant association was found between MCM7 variant genotypes and overall survival of AML patients (p > 0.05), while several associations between somatic mutations, clinical and biological features, and poor OS were noticed. Lactate dehydrogenase (LDH) level ≥ 600 IU/L had a significant effect on the hazard of death (p = 0.004, HR = 1.49, 95% CI: 1.13–1.95). Our study showed that the variant allele of rs2070215, in the allelic model, and CAT haplotype were associated with AML susceptibility. The investigated FLT3, DNMT3A, and NPM1 mutations were associated with the clinical and biological features and poor OS. LDH level ≥ 600 IU/L was associated with an increased hazard of death and this association remained significant when quantifying for effect modification by FLT3 mutation status.
Collapse
|
5
|
Kobayashi H, Lei C, Wu Y, Huang CJ, Yasumoto A, Jona M, Li W, Wu Y, Yalikun Y, Jiang Y, Guo B, Sun CW, Tanaka Y, Yamada M, Yatomi Y, Goda K. Intelligent whole-blood imaging flow cytometry for simple, rapid, and cost-effective drug-susceptibility testing of leukemia. LAB ON A CHIP 2019; 19:2688-2698. [PMID: 31287108 DOI: 10.1039/c8lc01370e] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drug susceptibility (also called chemosensitivity) is an important criterion for developing a therapeutic strategy for various cancer types such as breast cancer and leukemia. Recently, functional assays such as high-content screening together with genomic analysis have been shown to be effective for predicting drug susceptibility, but their clinical applicability is poor since they are time-consuming (several days long), labor-intensive, and costly. Here we present a highly simple, rapid, and cost-effective liquid biopsy for ex vivo drug-susceptibility testing of leukemia. The method is based on an extreme-throughput (>1 million cells per second), label-free, whole-blood imaging flow cytometer with a deep convolutional autoencoder, enabling image-based identification of the drug susceptibility of every single white blood cell in whole blood within 24 hours by simply flowing a drug-treated whole blood sample as little as 500 μL into the imaging flow cytometer without labeling. Our results show that the method accurately evaluates the drug susceptibility of white blood cells from untreated patients with acute lymphoblastic leukemia. Our method holds promise for affordable precision medicine.
Collapse
|
6
|
Elucidation of Novel Therapeutic Targets for Acute Myeloid Leukemias with RUNX1- RUNX1T1 Fusion. Int J Mol Sci 2019; 20:ijms20071717. [PMID: 30959925 PMCID: PMC6480444 DOI: 10.3390/ijms20071717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022] Open
Abstract
The RUNX1-RUNX1T1 fusion is a frequent chromosomal alteration in acute myeloid leukemias (AMLs). Although RUNX1-RUNX1T1 fusion protein has pivotal roles in the development of AMLs with the fusion, RUNX1-RUNX1T1, fusion protein is difficult to target, as it lacks kinase activities. Here, we used bioinformatic tools to elucidate targetable signaling pathways in AMLs with RUNX1-RUNX1T1 fusion. After analysis of 93 AML cases from The Cancer Genome Atlas (TCGA) database, we found expression of 293 genes that correlated to the expression of the RUNX1-RUNX1T1 fusion gene. Based on these 293 genes, the cyclooxygenase (COX), vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR) pathways were predicted to be specifically activated in AMLs with RUNX1-RUNX1T1 fusion. Moreover, the in vitro proliferation of AML cells with RUNX1-RUNX1T1 fusion decreased significantly more than that of AML cells without the fusion, when the pathways were inhibited pharmacologically. The results indicate that novel targetable signaling pathways could be identified by the analysis of the gene expression features of AMLs with non-targetable genetic alterations. The elucidation of specific molecular targets for AMLs that have a specific genetic alteration would promote personalized treatment of AMLs and improve clinical outcomes.
Collapse
|
7
|
STK3 is a therapeutic target for a subset of acute myeloid leukemias. Oncotarget 2018; 9:25458-25473. [PMID: 29876001 PMCID: PMC5986655 DOI: 10.18632/oncotarget.25238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by uncontrolled proliferation and accumulation of immature myeloblasts, which impair normal hematopoiesis. While this definition categorizes the disease into a distinctive group, the large number of different genetic and epigenetic alterations actually suggests that AML is not a single disease, but a plethora of malignancies. Still, most AML patients are not treated with targeted medication but rather by uniform approaches such as chemotherapy. The identification of novel treatment options likely requires the identification of cancer cell vulnerabilities that take into account the different genetic and epigenetic make-up of the individual tumors. Here we show that STK3 depletion by knock-down, knock-out or chemical inhibition results in apoptotic cells death in some but not all AML cell lines and primary cells tested. This effect is mediated by a premature activation of cyclin dependent kinase 1 (CDK1) in presence of elevated cyclin B1 levels. The anti-leukemic effects seen in both bulk and progenitor AML cells suggests that STK3 might be a promising target in a subset of AML patients.
Collapse
|
8
|
Shumilov E, Flach J, Kohlmann A, Banz Y, Bonadies N, Fiedler M, Pabst T, Bacher U. Current status and trends in the diagnostics of AML and MDS. Blood Rev 2018; 32:508-519. [PMID: 29728319 DOI: 10.1016/j.blre.2018.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023]
Abstract
Diagnostics of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) have recently been experiencing extensive modifications regarding the incorporation of next-generation sequencing (NGS) strategies into established diagnostic algorithms, classification and risk stratification systems, and minimal residual disease (MRD) detection. Considering the increasing arsenal of targeted therapies (e.g. FLT3 or IDH1/IDH2 inhibitors) for AML, timely and comprehensive molecular mutation screening has arrived in daily practice. Next-generation flow strategies allow for immunophenotypic minimal residual disease (MRD) monitoring with very high sensitivity. At the same time, standard diagnostic tools such as cytomorphology or conventional cytogenetics remain cornerstones for the diagnostic workup of myeloid malignancies. Herein, we summarize the most recent advances and new trends for the diagnostics of AML and MDS, discuss the difficulties, which accompany the integration of these new methods and their results into daily routine, and aim to define the role hemato-oncologists may play in this new diagnostic era.
Collapse
Affiliation(s)
- Evgenii Shumilov
- Department of Hematology and Medical Oncology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Alexander Kohlmann
- Precision Medicine and Genomics, Innovative Medicines and Early Development, AstraZeneca, Cambridge, UK
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, Inselspital, Bern, Bern University Hospital, University of Bern, Switzerland
| | - Martin Fiedler
- Center of Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland.
| | - Ulrike Bacher
- University Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland; Center of Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
9
|
Chronic Myeloid Leukemia with an e6a2 BCR-ABL1 Fusion Transcript: Cooperating Mutations at Blast Crisis and Molecular Monitoring. Case Rep Hematol 2017; 2017:9071702. [PMID: 29123930 PMCID: PMC5662812 DOI: 10.1155/2017/9071702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022] Open
Abstract
A minority of chronic myeloid leukemia patients (CML) express a variety of atypical BCR-ABL1 fusion variants and, of these, the e6a2 BCR-ABL1 fusion is generally associated with an aggressive disease course. Progression of CML to blast crisis is associated with acquisition of additional somatic mutations yet these events have not been elucidated in patients with the e6a2 BCR-ABL1 genotype. Moreover, molecular monitoring is only sporadically performed in CML patients with atypical BCR-ABL1 fusion transcripts due to lack of consensus approaches or standardization. A case of CML is described in which comprehensive molecular analysis, including targeted next-generation sequencing, revealed a single ASXL1 mutation cooperating with an e6a2 BCR-ABL1 fusion transcript at blast crisis. A quantitative molecular monitoring approach was devised and adopted that reflected the disease response from initial treatment through allogeneic stem cell transplantation which resulted in undetectable e6a2 BCR-ABL1 transcripts. This case emphasizes the requirement for molecular monitoring in CML patients with atypical BCR-ABL1 fusion transcripts and emphasizes that comprehensive sequencing has the potential to identify targets for novel therapies in CML patients with advanced disease.
Collapse
|
10
|
Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev 2017; 39:547-556. [PMID: 28390761 DOI: 10.1016/j.braindev.2017.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Peng Wu
- Department of Social Science, Hebei University of Engineering, Handan 056038, PR China
| | - Zhi-Min Shi
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yan-Li Xu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Zhi-Jun Liu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| |
Collapse
|
11
|
Molecular Profiling: A Case of ZBTB16-RARA Acute Promyelocytic Leukemia. Case Rep Hematol 2017; 2017:7657393. [PMID: 28529810 PMCID: PMC5424191 DOI: 10.1155/2017/7657393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/09/2017] [Indexed: 11/17/2022] Open
Abstract
Several variant RARA translocations have been reported in acute promyelocytic leukemia (APL) of which the t(11;17)(q23;q21), which results in a ZBTB16-RARA fusion, is the most widely identified and is largely resistant to therapy with all-trans retinoic acid (ATRA). The clinical course together with the cytogenetic and molecular characterization of a case of ATRA-unresponsive ZBTB16-RARA APL is described. Additional mutations potentially cooperating with the translocation fusion product in leukemogenesis have been hitherto unreported in ZBTB16-RARA APL and were sought by application of a next-generation sequencing approach to detect those recurrently found in myeloid malignancies. This technique identified a solitary, low level mutation in the CEBPA gene. Molecular profiling of additional mutations may provide a platform to individualise therapeutic management in patients with this rare form of APL.
Collapse
|
12
|
Wei TYW, Wu PY, Wu TJ, Hou HA, Chou WC, Teng CLJ, Lin CR, Chen JMM, Lin TY, Su HC, Huang CCF, Yu CTR, Hsu SL, Tien HF, Tsai MD. Aurora A and NF-κB Survival Pathway Drive Chemoresistance in Acute Myeloid Leukemia via the TRAF-Interacting Protein TIFA. Cancer Res 2016; 77:494-508. [PMID: 28069801 DOI: 10.1158/0008-5472.can-16-1004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/28/2016] [Accepted: 10/14/2016] [Indexed: 11/16/2022]
Abstract
Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR.
Collapse
Affiliation(s)
- Tong-You Wade Wei
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ting-Jung Wu
- Division of Liver and Transplantation Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Wen-Chien Chou
- Departments of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Ru Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Ting-Yang Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Chun Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Shih-Lan Hsu
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. .,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Daver N, Cortes J, Kantarjian H, Ravandi F. Acute myeloid leukemia: advancing clinical trials and promising therapeutics. Expert Rev Hematol 2016; 9:433-45. [PMID: 26910051 DOI: 10.1586/17474086.2016.1158096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress in understanding the biology of acute myeloid leukemia (AML) and the identification of targetable driver mutations, leukemia specific antigens and signal transduction pathways has ushered in a new era of therapy. In many circumstances the response rates with such targeted or antibody-based therapies are superior to those achieved with standard therapy and with decreased toxicity. In this review we discuss novel therapies in AML with a focus on two major areas of unmet need: (1) single agent and combination strategies to improve frontline therapy in elderly patients with AML and (2) molecularly targeted therapies in the frontline and salvage setting in all patients with AML.
Collapse
Affiliation(s)
- Naval Daver
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , Texas , USA
| | - Jorge Cortes
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , Texas , USA
| | - Hagop Kantarjian
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , Texas , USA
| | - Farhad Ravandi
- a Department of Leukemia , The University of Texas M. D. Anderson Cancer Center , Houston , Texas , USA
| |
Collapse
|