1
|
Pierce ES. How did Lou Gehrig get Lou Gehrig's disease? Mycobacterium avium subspecies paratuberculosis in manure, soil, dirt, dust and grass and amyotrophic lateral sclerosis (motor neurone disease) clusters in football, rugby and soccer players. Med Hypotheses 2018; 119:1-5. [PMID: 30122477 DOI: 10.1016/j.mehy.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
There are several suspected infectious causes of amyotrophic lateral sclerosis (ALS) or motor neurone disease including HIV-1 and species of Brucella, Cyanobacteria and Schistosoma. The increased rates and clusters of ALS in amateur and professional outdoor sports players including rugby, football and soccer players suggest a microorganism present in the grass, dirt and dust they play on and in may be a causative factor. The probable zoonosis Mycobacterium avium subspecies paratuberculosis (MAP) is heavily excreted in an infected domestic ruminant's feces or manure and is extensively distributed throughout the soil in countries where MAP infection of domestic livestock is longstanding. Like other zoonotic pathogens, MAP can be transmitted to humans by inhalation of aerosolized pathogen-contaminated soil, by direct contact of pathogen-contaminated grass, dirt and dust with mucus membranes lining the nose or mouth or through abrasions and cuts in the skin. Outdoor sports players may develop ALS after multiple oral, nasal or subcutaneous doses of MAP present in the dirt, dust and grass of their playing fields.
Collapse
Affiliation(s)
- Ellen S Pierce
- 13212 East Blossey Avenue, Spokane Valley, Washington 99216-2807, USA.
| |
Collapse
|
2
|
Ahmed SS, Dey N, Ashour AS, Sifaki-Pistolla D, Bălas-Timar D, Balas VE, Tavares JMRS. Effect of fuzzy partitioning in Crohn's disease classification: a neuro-fuzzy-based approach. Med Biol Eng Comput 2017; 55:101-115. [PMID: 27106754 DOI: 10.1007/s11517-016-1508-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/31/2016] [Indexed: 02/08/2023]
Abstract
Crohn's disease (CD) diagnosis is a tremendously serious health problem due to its ultimately effect on the gastrointestinal tract that leads to the need of complex medical assistance. In this study, the backpropagation neural network fuzzy classifier and a neuro-fuzzy model are combined for diagnosing the CD. Factor analysis is used for data dimension reduction. The effect on the system performance has been investigated when using fuzzy partitioning and dimension reduction. Additionally, further comparison is done between the different levels of the fuzzy partition to reach the optimal performance accuracy level. The performance evaluation of the proposed system is estimated using the classification accuracy and other metrics. The experimental results revealed that the classification with level-8 partitioning provides a classification accuracy of 97.67 %, with a sensitivity and specificity of 96.07 and 100 %, respectively.
Collapse
Affiliation(s)
- Sk Saddam Ahmed
- Department of CSE, JIS College of Engineering, Kalyani, West Bengal, India
| | - Nilanjan Dey
- Department of Information Technology, Techno India College of Technology, Kolkata, India
| | - Amira S Ashour
- Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt.
- College of Computers and IT, Taif University, Ta'if, Saudi Arabia.
| | - Dimitra Sifaki-Pistolla
- Clinic of Social and Family Medicine, Faculty of Medicine, University of Crete, Crete, Greece
| | - Dana Bălas-Timar
- Faculty of Educational Sciences, Psychology and Social Sciences, Aurel Vlaicu University of Arad, Arad, Romania
| | - Valentina E Balas
- Faculty of Engineering, Aurel Vlaicu University of Arad, Arad, Romania
| | - João Manuel R S Tavares
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
3
|
The zoonotic potential of Mycobacterium avium ssp. paratuberculosis: a systematic review and meta-analyses of the evidence. Epidemiol Infect 2015; 143:3135-57. [PMID: 25989710 DOI: 10.1017/s095026881500076x] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This systematic review-meta-analysis appraises and summarizes all the available research (128 papers) on the zoonotic potential of Mycobacterium avium ssp. paratuberculosis. The latter has been debated for a century due to pathogenic and clinical similarities between Johne's disease in ruminants and Crohn's disease (108 studies) in humans and recently for involvement in other human diseases; human immunodeficiency virus (HIV) infection (2), sarcoidosis (3), diabetes mellitus type 1 (T1DM) (7) and type 2 (3), multiple sclerosis (5) and Hashimoto's thyroiditis (2). Meta-analytical results indicated a significant positive association, consistently across different laboratory methods for Crohn's disease [odds ratio (OR) range 4·26-8·44], T1DM (OR range 2·91-9·95) and multiple sclerosis (OR range 6·5-7·99). The latter two and the thyroiditis hypothesis require further investigation to confirm the association. Meta-regression of Crohn's disease studies using DNA detection methods indicated that choice of primers and sampling frame (e.g. general population vs. hospital-based sample) explained a significant proportion of heterogeneity. Other epidemiological studies demonstrated a lack of association between high-risk occupations and development of Crohn's disease. Due to knowledge gaps in understanding the role of M. paratuberculosis in the development or progression of human disease, the evidence at present is not strong enough to inform the potential public health impact of M. paratuberculosis exposure.
Collapse
|
4
|
Salem M, Seidelin JB, Eickhardt S, Alhede M, Rogler G, Nielsen OH. Species-specific engagement of human nucleotide oligomerization domain 2 (NOD)2 and Toll-like receptor (TLR) signalling upon intracellular bacterial infection: role of Crohn's associated NOD2 gene variants. Clin Exp Immunol 2015; 179:426-34. [PMID: 25335775 DOI: 10.1111/cei.12471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/29/2022] Open
Abstract
Recognition of bacterial peptidoglycan-derived muramyl-dipeptide (MDP) by nucleotide oligomerization domain 2 (NOD2) induces crucial innate immune responses. Most bacteria carry the N-acetylated form of MDP (A-MDP) in their cell membranes, whereas N-glycolyl MDP (G-MDP) is typical for mycobacteria. Experimental murine studies have reported G-MDP to have a greater NOD2-stimulating capacity than A-MDP. As NOD2 polymorphisms are associated with Crohn's disease (CD), a link has been suggested between mycobacterial infections and CD. Thus, the aim was to investigate if NOD2 responses are dependent upon type of MDP and further to determine the role of NOD2 gene variants for the bacterial recognition in CD. The response pattern to A-MDP, G-MDP, Mycobacterium segmatis (expressing mainly G-MDP) and M. segmatisΔnamH (expressing A-MDP), Listeria monocytogenes (LM) (an A-MDP-containing bacteria) and M. avium paratuberculosis (MAP) (a G-MDP-containing bacteria associated with CD) was investigated in human peripheral blood mononuclear cells (PBMCs). A-MDP and M. segmatisΔnamH induced significantly higher tumour necrosis factor (TNF)-α protein levels in healthy wild-type NOD2 PBMCs compared with G-MDP and M. segmatis. NOD2 mutations resulted in a low tumour necrosis factor (TNF)-α protein secretion following stimulation with LM. Contrary to this, TNF-α levels were unchanged upon MAP stimulation regardless of NOD2 genotype and MAP solely activated NOD2- and Toll-like receptor (TLRs)-pathway with an enhanced production of interleukin (IL)-1β and IL-10. In conclusion, the results indicate that CD-associated NOD2 deficiencies might affect the response towards a broader array of commensal and pathogenic bacteria expressing A-MDP, whereas they attenuate the role of mycobacteria in the pathogenesis of CD.
Collapse
Affiliation(s)
- M Salem
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
5
|
Nabatov AA. The vesicle-associated function of NOD2 as a link between Crohn's disease and mycobacterial infection. Gut Pathog 2015; 7:1. [PMID: 25653718 PMCID: PMC4316803 DOI: 10.1186/s13099-015-0049-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/03/2015] [Indexed: 12/18/2022] Open
Abstract
Although Crohn’s disease (CD) etiology remains unclear, a growing body of evidence suggests that CD may include an infectious component, with Mycobacterium avium subsp. paratuberculosis (MAP) being the most likely candidate for this role. However, the molecular mechanism of the MAP involvement in CD pathogenesis remains unclear. The polymorphism of the NOD2 gene, coding for an intracellular pattern recognition receptor, is a factor of predisposition to mycobacterial infections and CD. Recent findings on NOD2 interactions and functions provide the missing pieces in the puzzle of a NOD2-mediated mechanism common for mycobacterial infections and CD. Implications of these new findings for the development of a better understanding and treatments of CD and mycobacterial infections are discussed.
Collapse
Affiliation(s)
- Alexey A Nabatov
- Maastricht Radiation Oncology, MAASTRO/GROW Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands ; Science Center, Volga Region State Academy of Physical Culture, Sport and Tourism, 33, Universiade Village, Kazan, 420138 Russia
| |
Collapse
|
6
|
Fei BY, Lv HX, Zheng WH. Fluorescent quantitative PCR of Mycobacterium tuberculosis for differentiating intestinal tuberculosis from Crohn's disease. Braz J Med Biol Res 2014; 47:166-70. [PMID: 24519133 PMCID: PMC4051178 DOI: 10.1590/1414-431x20133277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/02/2013] [Indexed: 02/07/2023] Open
Abstract
Intestinal tuberculosis (ITB) and Crohn's disease (CD) are granulomatous disorders with similar clinical manifestations and pathological features that are often difficult to differentiate. This study evaluated the value of fluorescent quantitative polymerase chain reaction (FQ-PCR) for Mycobacterium tuberculosis (MTB) in fecal samples and biopsy specimens to differentiate ITB from CD. From June 2010 to March 2013, 86 consecutive patients (38 females and 48 males, median age 31.3 years) with provisional diagnoses of ITB and CD were recruited for the study. The patients' clinical, endoscopic, and histological features were monitored until the final definite diagnoses were made. DNA was extracted from 250 mg fecal samples and biopsy tissues from each patient. The extracted DNA was amplified using FQ-PCR for the specific MTB sequence. A total of 29 ITB cases and 36 CD cases were included in the analysis. Perianal disease and longitudinal ulcers were significantly more common in the CD patients (P<0.05), whereas night sweats, ascites, and circumferential ulcers were significantly more common in the ITB patients (P<0.05). Fecal FQ-PCR for MTB was positive in 24 (82.8%) ITB patients and 3 (8.3%) CD patients. Tissue PCR was positive for MTB in 16 (55.2%) ITB patients and 2 (5.6%) CD patients. Compared with tissue FQ-PCR, fecal FQ-PCR was more sensitive (X2=5.16, P=0.02). We conclude that FQ-PCR for MTB on fecal and tissue samples is a valuable assay for differentiating ITB from CD, and fecal FQ-PCR has greater sensitivity for ITB than tissue FQ-PCR.
Collapse
Affiliation(s)
- B Y Fei
- Department of Gastroenterology, Zhejiang Province People's Hospital, Hangzhou, China, Department of Gastroenterology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang Province, China
| | - H X Lv
- Department of Clinical Laboratory, Zhejiang Province People's Hospital, Hangzhou, China, Department of Clinical Laboratory, Zhejiang Province People's Hospital, Hangzhou, Zhejiang Province, China
| | - W H Zheng
- Department of Gastroenterology, Zhejiang Province People's Hospital, Hangzhou, China, Department of Gastroenterology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Paschoal PO, Chamberlin W. Review of the 1st Annual World Congress of Immunodiseases and Therapeutics. Expert Rev Clin Immunol 2014; 6:757-9. [DOI: 10.1586/eci.10.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
|
9
|
Abstract
Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.
Collapse
Affiliation(s)
- Bharath Wootla
- Departments of Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
10
|
Zhong Y, Kinio A, Saleh M. Functions of NOD-Like Receptors in Human Diseases. Front Immunol 2013; 4:333. [PMID: 24137163 PMCID: PMC3797414 DOI: 10.3389/fimmu.2013.00333] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022] Open
Abstract
Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly conserved cytosolic pattern recognition receptors that perform critical functions in surveying the intracellular environment for the presence of infection, noxious substances, and metabolic perturbations. Sensing of these danger signals by NLRs leads to their oligomerization into large macromolecular scaffolds and the rapid deployment of effector signaling cascades to restore homeostasis. While some NLRs operate by recruiting and activating inflammatory caspases into inflammasomes, others trigger inflammation via alternative routes including the nuclear factor-κB, mitogen-activated protein kinase, and regulatory factor pathways. The critical role of NLRs in development and physiology is demonstrated by their clear implications in human diseases. Mutations in the genes encoding NLRP3 or NLRP12 lead to hereditary periodic fever syndromes, while mutations in CARD15 that encodes NOD2 are linked to Crohn’s disease or Blau’s syndrome. Genome-wide association studies (GWASs) have identified a number of risk alleles encompassing NLR genes in a host of diseases including allergic rhinitis, multiple sclerosis, inflammatory bowel disease, asthma, multi-bacillary leprosy, vitiligo, early-onset menopause, and bone density loss in elderly women. Animal models have allowed the characterization of underlying effector mechanisms in a number of cases. In this review, we highlight the functions of NLRs in health and disease and discuss how the characterization of their molecular mechanisms provides new insights into therapeutic strategies for the management of inflammatory pathologies.
Collapse
Affiliation(s)
- Yifei Zhong
- Department of Microbiology and Immunology, McGill University , Montreal, QC , Canada
| | | | | |
Collapse
|
11
|
Salem M, Seidelin JB, Rogler G, Nielsen OH. Muramyl dipeptide responsive pathways in Crohn's disease: from NOD2 and beyond. Cell Mol Life Sci 2013; 70:3391-404. [PMID: 23275943 PMCID: PMC11113952 DOI: 10.1007/s00018-012-1246-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/15/2022]
Abstract
Crohn's disease (CD) is one of main disease entities under the umbrella term chronic inflammatory bowel disease. The etiology of CD involves alterations in genetic, microbiological, and immunological factors. This review is devoted to the role of the bacterial wall compound muramyl dipeptide (MDP) for the activation of inflammatory pathways involved in the pathogenesis of CD. The importance of this molecule is underscored by the fact that (1) MDP, which is found in most Gram-negative and -positive bacteria, is able to trigger several immunological responses in the intestinal system, and (2) that alterations in several mediators of the MDP response including-but not restricted to-nucleotide oligomerization domain 2 (NOD2) are associated with CD. The normalization of MDP signaling is one of several important factors that influence the intestinal inflammatory response, a fact which emphasizes the pathogenic importance of MDP signaling for the pathogenesis of CD. The important aspects of NOD2 and non-NOD2 mediated effects of MDP for the development of CD are highlighted, as well as how alterations in these pathways might translate into the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Salem
- Department of Gastroenterology D, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology D, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark
- Department of Internal Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, Zürich University Hospital, Zurich, Switzerland
| | - Ole Haagen Nielsen
- Department of Gastroenterology D, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark
| |
Collapse
|
12
|
Nikonenko BV, Apt AS. Drug testing in mouse models of tuberculosis and nontuberculous mycobacterial infections. Tuberculosis (Edinb) 2013; 93:285-90. [DOI: 10.1016/j.tube.2013.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 01/12/2023]
|
13
|
PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl Trop Dis 2013; 7:e2015. [PMID: 23350010 PMCID: PMC3547867 DOI: 10.1371/journal.pntd.0002015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/03/2012] [Indexed: 01/02/2023] Open
Abstract
Leprosy is a persistent infectious disease caused by Mycobacterium leprae that still affects over 200,000 new patients annually. The host genetic background is an important risk factor for leprosy susceptibility and the PARK2 gene is a replicated leprosy susceptibility candidate gene. The protein product of PARK2, Parkin, is an E3 ubiquitin ligase that is involved in the development of various forms of Parkinsonism. The human macrophage is both a natural host cell of M. leprae as well as a primary mediator of natural immune defenses, in part by secreting important pro-inflammatory cytokines and chemokines. Here, we report that down-regulation of Parkin in THP-1 macrophages, human monocyte-derived macrophages and human Schwann cells resulted in a consistent and specific decrease in interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1/CCL2) production in response to mycobacteria or LPS. Interestingly, production of IL-6 at 6 hours by THP-1 cells stimulated with live M. leprae and M. bovis BCG was dependent on pretreatment with 1,25-dihydroxyvitamin D3 (VD). Parkin knockdown in VD-treated cells blocked IL-6 induction by mycobacteria. However, IκB-α phosphorylation and levels of IκB-ξ, a nuclear protein required for IL-6 expression, were not affected by Parkin silencing. Phosphorylation of MAPK ERK1/2 and p38 was unaffected by Parkin silencing while JNK activation was promoted but did not explain the altered cytokine production. In a final set of experiments we found that genetic risk factors of leprosy located in the PARK2 promoter region were significantly correlated with M. leprae sonicate triggered CCL2 and IL6 transcript levels in whole blood assays. These results associated genetically controlled changes in the production of MCP-1/CCL2 and IL-6 with known leprosy susceptibility factors. Leprosy is an infectious disease with a strong host genetic component. The identification of host genetic lesions predisposing to disease is a powerful approach for mapping key junctions in the host pathogen interplay. Genetic variants located in the promoter region of the PARK2 gene are replicated leprosy susceptibility factors. To better understand a possible contribution of PARK2 to host effector mechanisms in leprosy patients, we developed a cellular model to test the contribution of the PARK2 encoded parkin protein to host responses to mycobacterial antigens. We observed that parkin was a mediator of IL-6 production in response to mycobacterial antigen in both THP-1 macrophages and human Schwann cells while human monocyte-derived macrophages needed to be pre-activated with VitD to show the same impact. Parkin also impacted on the constitutive production of MCP-1. The regulatory activity of parkin on cytokine production was found to be independent of the canonical TLR-NFκB signalling pathway. We also tested association of IL6 and CCL2 gene expression levels in whole blood assays with PARK2 polymorphisms. For both cytokines, we found significant associations with those PARK2 variants that were established leprosy susceptibility factors. Hence, our results show that genetic PARK2 variants that are correlated with leprosy susceptibility are also correlated with production of these cytokines following stimulation with M. leprae sonicate.
Collapse
|
14
|
Low dose zymosan ameliorates both chronic and relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 2012; 254:28-38. [PMID: 23010280 DOI: 10.1016/j.jneuroim.2012.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/15/2012] [Accepted: 08/23/2012] [Indexed: 01/08/2023]
Abstract
Zymosan has previously been reported to have both pro-inflammatory and anti-inflammatory effects. Here we demonstrate that low dose zymosan prevented or reversed chronic and relapsing paralysis in EAE. In suppressing CNS autoimmune inflammation, zymosan not only regulated APC costimulator and MHC class II expression, but also promoted differentiation of regulatory T cells. Following adoptive transfer of zymosan-primed CD4(+) T cells, recipient mice were protected from EAE. In contrast, a MAPK inhibitor and a blocker of β-glucan, reversed the effects of zymosan. These results demonstrate that zymosan may be a promising beneficial agent for Multiple Sclerosis (MS).
Collapse
|
15
|
Zhou XJ, Zhang H. Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy 2012; 8:1286-99. [PMID: 22878595 DOI: 10.4161/auto.21212] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is now emerging as a spotlight in trafficking events that activate innate and adaptive immunity. It facilitates innate pathogen detection and antigen presentation, as well as pathogen clearance and lymphocyte homeostasis. In this review, we first summarize new insights into its functions in immunity, which underlie its associations with autoimmunity. As some lines of evidence are emerging to support its role in autoimmune and autoinflammatory diseases, we further discuss whether and how it affects autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, diabetes mellitus and multiple sclerosis, as well as autoinflammatory diseases, such as Crohn disease and vitiligo.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW There is accumulating evidence on the importance of microbes in the development and maintenance of both the intestinal and immune systems. This review focuses on the current findings on the role of gastrointestinal pathogens in the cause of chronic inflammatory bowel disease. RECENT FINDINGS A number of intestinal pathogens including Mycobacterium avium subspecies paratuberculosis, adherent-invasive Escherichia coli, and Campylobacter species are associated at fairly high prevalence with Crohn's disease, while two recent studies found a low prevalence for cytomegalovirus. In a prospective study, M. avium subspecies paratuberculosis detection in early Crohn's disease was low and comparable to controls, while much higher in an established inflammatory bowel disease cohort. In the pediatric setting, a high prevalence of Clostridium difficile was seen in both active and inactive Crohn's disease and ulcerative colitis patients. Some studies have speculated that Salmonella or Campylobacter infection may increase the risk of inflammatory bowel disease on long-term follow-up, but detection bias was found to obscure the risk. Recent studies in mouse models have demonstrated that a combination of factors, including viral pathogens, genetic susceptibility, and commensal microflora, can lead to intestinal pathology. SUMMARY No evidence for causation of inflammatory bowel disease by a single agent has been found, whereas a number of microbes have been strongly associated with the presence of disease. The majority of recent studies support a role for the ability of intestinal pathogens to promote chronic inflammation in individuals with genetic susceptibility and/or other environmental factors which remain to be identified. These factors may include subsets of commensal microflora.
Collapse
|
17
|
Newport MJ, Finan C. Genome-wide association studies and susceptibility to infectious diseases. Brief Funct Genomics 2011; 10:98-107. [PMID: 21436306 DOI: 10.1093/bfgp/elq037] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Progress in genomics and the associated technological, statistical and bioinformatics advances have facilitated the successful implementation of genome-wide association studies (GWAS) towards understanding the genetic basis of common diseases. Infectious diseases contribute significantly to the global burden of disease and there is robust epidemiological evidence that host genetic factors are important determinants of the outcome of interactions between host and pathogen. Indeed, infectious diseases have exerted profound selective pressure on human evolution. However, the application of GWAS to infectious diseases has been relatively limited compared with non-communicable diseases. Here we review GWAS findings for important infectious diseases, including malaria, tuberculosis and HIV. We highlight some of the pitfalls recognized more generally for GWAS, as well as issues specific to infection, including the role of the pathogen which also has a genome. We also discuss the challenges encountered when studying African populations which are genetically more ancient and more diverse that other populations and disproportionately bear the main global burden of serious infectious diseases.
Collapse
Affiliation(s)
- Melanie J Newport
- Infectious Diseases and Global Health at Brighton and Sussex Medical School, UK.
| | | |
Collapse
|
18
|
Miklossy J. Alzheimer's disease - a neurospirochetosis. Analysis of the evidence following Koch's and Hill's criteria. J Neuroinflammation 2011; 8:90. [PMID: 21816039 PMCID: PMC3171359 DOI: 10.1186/1742-2094-8-90] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/04/2011] [Indexed: 12/14/2022] Open
Abstract
It is established that chronic spirochetal infection can cause slowly progressive dementia, brain atrophy and amyloid deposition in late neurosyphilis. Recently it has been suggested that various types of spirochetes, in an analogous way to Treponema pallidum, could cause dementia and may be involved in the pathogenesis of Alzheimer's disease (AD). Here, we review all data available in the literature on the detection of spirochetes in AD and critically analyze the association and causal relationship between spirochetes and AD following established criteria of Koch and Hill. The results show a statistically significant association between spirochetes and AD (P = 1.5 × 10-17, OR = 20, 95% CI = 8-60, N = 247). When neutral techniques recognizing all types of spirochetes were used, or the highly prevalent periodontal pathogen Treponemas were analyzed, spirochetes were observed in the brain in more than 90% of AD cases. Borrelia burgdorferi was detected in the brain in 25.3% of AD cases analyzed and was 13 times more frequent in AD compared to controls. Periodontal pathogen Treponemas (T. pectinovorum, T. amylovorum, T. lecithinolyticum, T. maltophilum, T. medium, T. socranskii) and Borrelia burgdorferi were detected using species specific PCR and antibodies. Importantly, co-infection with several spirochetes occurs in AD. The pathological and biological hallmarks of AD were reproduced in vitro by exposure of mammalian cells to spirochetes. The analysis of reviewed data following Koch's and Hill's postulates shows a probable causal relationship between neurospirochetosis and AD. Persisting inflammation and amyloid deposition initiated and sustained by chronic spirochetal infection form together with the various hypotheses suggested to play a role in the pathogenesis of AD a comprehensive entity. As suggested by Hill, once the probability of a causal relationship is established prompt action is needed. Support and attention should be given to this field of AD research. Spirochetal infection occurs years or decades before the manifestation of dementia. As adequate antibiotic and anti-inflammatory therapies are available, as in syphilis, one might prevent and eradicate dementia.
Collapse
Affiliation(s)
- Judith Miklossy
- International Alzheimer Research Center, Prevention Alzheimer Foundation, Martigny-Combe, Switzerland.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent developments in support of the immunodeficiency model of Crohn's disease. RECENT FINDINGS The demonstration of impaired acute inflammation in Crohn's disease provides a novel mechanism for its pathogenesis, with diminished macrophage cytokine production and neutrophil recruitment leading to reduced bacterial clearance. The innate immune response may be further overwhelmed by other factors. The mucosal barrier in Crohn's patients is disrupted, with abnormal ultrastructure as well as antibacterial defensin deficiency. Specific bacterial agents may contribute and one promising candidate, adherent-invasive Escherichia coli, has recently been described. An interaction between Nod2 and the autophagy system has been elucidated, with direct consequences for bacterial clearance, and the most recent genome-wide association study meta-analysis has extended the number of Crohn's disease susceptibility loci to 71. The spectrum of congenital immunodeficiency disorders recognized to develop Crohn's-like inflammatory bowel disease is also expanding. Conversely, no specific immunodeficiency has so far been observed in ulcerative colitis, in which the defect appears to be failure of inflammation termination and resolution. SUMMARY Recent advances continue to highlight defects in innate immunity in Crohn's patients. Similar abnormalities may extend to other granulomatous disorders, but not diseases such as ulcerative colitis.
Collapse
|
20
|
Click RE. Successful treatment of asymptomatic or clinically terminal bovine Mycobacterium avium subspecies paratuberculosis infection (Johne's disease) with the bacterium Dietzia used as a probiotic alone or in combination with dexamethasone: Adaption to chronic human diarrheal diseases. Virulence 2011; 2:131-43. [PMID: 21460639 DOI: 10.4161/viru.2.2.15647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A naturally occurring gastrointestinal disease, primarily of ruminants (Johne disease), is a chronic debilitating disease that is caused by Mycobacterium avium subspecies paratuberculosis (MAP). MAP infection occurs primarily in utero and in newborns. Outside our Dietzia probiotic treatment, there are no preventive/curative therapies for bovine paratuberculosis. Interestingly, MAP is at the center of controversy as to its role in (cause of) Crohn disease (CD) and more recently, its role in diabetes, ulcerative colitis, and irritable bowel syndrome (IBS); the latter two, like CD, are considered to be a result of chronic intestinal inflammation. Treatments, both conventional and biologic agents, which induce and maintain remission are directed at curtailing processes that are an intricate part of inflammation. Most possess side effects of varying severity, lose therapeutic value, and more importantly, none routinely result in prevention and/or cures. Based on (a) similarities of Johne disease and Crohn disease, (b) a report that Dietzia inhibited growth of MAP under specific culture conditions, and (c) findings that Dietzia when used as a probiotic, (i) was therapeutic for adult bovine paratuberculosis, and (ii) prevented development of disease in MAP-infected calves, the goal of the present investigations was to design protocols that have applicability for IBD patients. Dietzia was found safe for cattle of all ages and for normal and immunodeficient mice. The results strongly warrant clinical evaluation as a probiotic, in combination with/without dexamethasone.
Collapse
|
21
|
Pierce ES. Ulcerative colitis and Crohn's disease: is Mycobacterium avium subspecies paratuberculosis the common villain? Gut Pathog 2010; 2:21. [PMID: 21167058 PMCID: PMC3031217 DOI: 10.1186/1757-4749-2-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium avium, subspecies paratuberculosis (MAP) causes a chronic disease of the intestines in dairy cows and a wide range of other animals, including nonhuman primates, called Johne's ("Yo-knee's") disease. MAP has been consistently identified by a variety of techniques in humans with Crohn's disease. The research investigating the presence of MAP in patients with Crohn's disease has often identified MAP in the "negative" ulcerative colitis controls as well, suggesting that ulcerative colitis is also caused by MAP. Like other infectious diseases, dose, route of infection, age, sex and genes influence whether an individual infected with MAP develops ulcerative colitis or Crohn's disease. The apparently opposite role of smoking, increasing the risk of Crohn's disease while decreasing the risk of ulcerative colitis, is explained by a more careful review of the literature that reveals smoking causes an increase in both diseases but switches the phenotype from ulcerative colitis to Crohn's disease. MAP as the sole etiologic agent of both ulcerative colitis and Crohn's disease explains their common epidemiology, geographic distribution and familial and sporadic clusters, providing a unified hypothesis for the prevention and cure of the no longer "idiopathic" inflammatory bowel diseases.
Collapse
|