1
|
Chang HH, Liou YS, Sun DS. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Tzu Chi Med J 2024; 36:349-359. [PMID: 39421490 PMCID: PMC11483098 DOI: 10.4103/tcmj.tcmj_100_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair and regeneration. This review explores their intricate interplay, elucidating their collaborative role in maintaining tissue homeostasis and responding to injury or disease. While examining the fundamentals of stem cells, we detail the mechanisms underlying inflammation, including immune cell recruitment and inflammatory mediator release, highlighting their self-renewal and differentiation capabilities. Central to our exploration is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, growth factors, and autophagy, an intracellular catabolic mechanism involved in this process, are discussed alongside their clinical relevance. Furthermore, mesenchymal stem cell homing in response to inflammation contributes to tissue repair processes. In addition, we discuss stem cell resilience in the face of inflammatory challenges. Moreover, we examine the reciprocal influence of stem cells on the inflammatory milieu, shaping immune responses and tissue repair. We underscore the potential of targeting inflammation-induced stem cell mobilization for regenerative therapies through extensive literature analysis and clinical insights. By unraveling the complex interplay between inflammation and stem cells, this review advances our understanding of tissue repair mechanisms and offers promising avenues for clinical translation in regenerative medicine.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
2
|
Brochier A, Hofmans M, Lambrecht S, Breughe P, Denys B, De Bruyne S, Buysse M, Vantilborgh A, Bonroy C. The added value of automated HPC count: detecting clinically important interferences on the flow cytometric CD34+ cell count. Clin Chem Lab Med 2024; 62:e160-e163. [PMID: 37725405 DOI: 10.1515/cclm-2023-0601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Affiliation(s)
- Alice Brochier
- Hematology Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mattias Hofmans
- Hematology Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stijn Lambrecht
- Hematology Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Pauline Breughe
- Hematology Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Barbara Denys
- Hematology Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sander De Bruyne
- Hematology Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Malicorne Buysse
- Hematology Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anna Vantilborgh
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Carolien Bonroy
- Hematology Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
3
|
Cruciani S, Garroni G, Pala R, Barcessat ARP, Facchin F, Ventura C, Fozza C, Maioli M. Melatonin finely tunes proliferation and senescence in hematopoietic stem cells. Eur J Cell Biol 2022; 101:151251. [PMID: 35772322 DOI: 10.1016/j.ejcb.2022.151251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Human hematopoietic stem/progenitor cells (HSPCs) are pluripotent cells that gradually lose their self-renewal and regenerative potential, to give rise to mature cells of the hematopoietic system by differentiation. HSPC infusion is used to restore hematopoietic function in patients with a variety of onco-hematologic and immune-mediated disorders. The functionality of these cells is therefore of great importance to ensure the homeostasis of the hematopoietic system. Melatonin plays an important role as immunomodulatory and oncostatic hormone. In the present manuscript, we aimed at evaluating the activity of melatonin in modulating HSPC senescence, in the attempt to improve their hemopoietic regenerative potential. We exposed HSPCs to melatonin, in different conditions, and then analyzed the expression of genes regulating cell cycle and cell senescence. Moreover, we assessed cell senescence by β-galactosidase and telomerase activity. Our results showed the ability of melatonin to counteract HSPC senescence, thus paving the way for enhanced efficiency in their clinical application.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM).
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Ana Rita Pinheiro Barcessat
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Health and Biological Sciences Department, Federal University of Amapá, Macapá, Brazil.
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, Eldor Lab, Istituto Nazionale di Biostrutture e Biosistemi (INBB), Innovation Accelerators, CNR, Bologna 40129, Italy.
| | - Claudio Fozza
- Blood Diseases Department of Clinical and Experimental Medicine University of Sassari, 07100 Sassari, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM); Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
4
|
Perdomo S, Brugnini A, Trias N, Menyou A, Silveira G, Ranero S, Lens D, Díaz L, Grille S. Mobilized and apheresis-collected endothelial progenitor cells with plerixafor. J Clin Apher 2022; 37:245-252. [PMID: 35114004 DOI: 10.1002/jca.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are immature cells able to proliferate and contribute to endothelial repair, vascular homeostasis, neovascularization, and angiogenesis. It therefore seems likely that circulating EPCs have therapeutic potential in ischemic and vascular diseases. In this study we evaluated the efficiency of EPC mobilization and collection by large volume leukapheresis in subjects with hematological diseases, treated with plerixafor in association with G-CSF. METHODS Twenty-two patients with lymphoid malignancies underwent rHuG-CSF and plerixafor treatment followed by leukapheresis. Blood samples before and after treatment and apheresis liquid sample were taken and analyzed by flow cytometry in order to quantified EPC. RESULTS The percentage of CD34+ cells and EPCs among circulating total nuclear cells (TNCs) increased significantly by approximately 2-fold and 3-fold, respectively, after plerixafor treatment. Consequently, the absolute number of CD34+ cells and EPCs were increased 4-fold after plerixafor treatment. The median PB concentration of EPCs before and after treatment were 0.77/μL (0.31-2.15) and 3.41/μL (1.78-4.54), respectively, P < .0001. The total EPCs collected per patient were 3.3×107 (0.8×107 -6.8×107 ). CONCLUSION We have shown that plerixafor in combination with G-CSF allows the mobilization and collection of large amounts of EPCs along with CD34+ cells in lymphoid neoplasm patients. The possibility to collect and to store these cells could represent a promising therapeutic tool for the treatment of ischemic complications without the need of in vitro expansion.
Collapse
Affiliation(s)
- Susana Perdomo
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Andreina Brugnini
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Trias
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alba Menyou
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Gonzalo Silveira
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sabrina Ranero
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Daniela Lens
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lilián Díaz
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Sofía Grille
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay.,Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Ferdjallah A, Young JAH, MacMillan ML. A Review of Infections After Hematopoietic Cell Transplantation Requiring PICU Care: Transplant Timeline Is Key. Front Pediatr 2021; 9:634449. [PMID: 34386464 PMCID: PMC8353083 DOI: 10.3389/fped.2021.634449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Despite major advances in antimicrobial prophylaxis and therapy, opportunistic infections remain a major cause of morbidity and mortality after pediatric hematopoietic cell transplant (HCT). Risk factors associated with the development of opportunistic infections include the patient's underlying disease, previous infection history, co-morbidities, source of the donor graft, preparative therapy prior to the graft infusion, immunosuppressive agents, early and late toxicities after transplant, and graft-vs.-host disease (GVHD). Additionally, the risk for and type of infection changes throughout the HCT course and is greatly influenced by the degree and duration of immunosuppression of the HCT recipient. Hematopoietic cell transplant recipients are at high risk for rapid clinical decompensation from infections. The pediatric intensivist must remain abreast of the status of the timeline from HCT to understand the risk for different infections. This review will serve to highlight the infection risks over the year-long course of the HCT process and to provide key clinical considerations for the pediatric intensivist by presenting a series of hypothetical HCT cases.
Collapse
Affiliation(s)
- Asmaa Ferdjallah
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Jo-Anne H Young
- Department of Medicine, Division of Infectious Disease and International Medicine, Program in Transplant Infectious Disease, University of Minnesota, Minneapolis, MN, United States
| | - Margaret L MacMillan
- Department of Pediatrics, Division of Blood and Marrow Transplantation and Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
BH3 mimetics suppress CXCL12 expression in human malignant peripheral nerve sheath tumor cells. Oncotarget 2018; 8:8670-8678. [PMID: 28055968 PMCID: PMC5352431 DOI: 10.18632/oncotarget.14398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, Schwann cell-derived neoplasms of the peripheral nervous system that have recently been shown to possess an autocrine CXCL12/CXCR4 signaling loop that promotes tumor cell proliferation and survival. Importantly, the CXCL12/CXCR4 signaling axis is driven by availability of the CXCL12 ligand rather than CXCR4 receptor levels alone. Therefore, pharmacological reduction of CXCL12 expression could be a potential chemotherapeutic target for patients with MPNSTs or other pathologies wherein the CXCL12/CXCR4 signaling axis is active. AT101 is a well-established BCL-2 homology domain 3 (BH3) mimetic that we recently demonstrated functions as an iron chelator and thus acts as a hypoxia mimetic. In this study, we found that AT101 significantly reduces CXCL12 mRNA and secreted protein in established human MPNST cell lines in vitro. This effect was recapitulated by other BH3 mimetics [ABT-737 (ABT), obatoclax (OBX) and sabutoclax (SBX)] but not by desferrioxamine (DFO), an iron chelator and known hypoxia mimetic. These data suggest that CXCL12 reduction is a function of AT101's BH3 mimetic property rather than its iron chelation ability. Additionally, this study investigates a potential mechanism of BH3 mimetic-mediated CXCL12 suppression: liberation of a negative CXCL12 transcriptional regulator, poly (ADP-Ribose) polymerase I (PARP1) from its physical interaction with BCL-2. These data suggest that clinically available BH3 mimetics might prove therapeutically useful at least in part by virtue of their ability to suppress CXCL12 expression.
Collapse
|
7
|
Abstract
Peripheral blood stem cell collection is an effective approach to obtain a hematopoietic graft for stem cell transplantation. Developing hematopoietic stem/progenitor cell (HSPC) mobilization methods and collection algorithms have improved efficiency, clinical outcomes, and cost effectiveness. Differences in mobilization mechanisms may change the HSPC content harvested and result in different engraftment kinetics and complications. Patient-specific factors can affect mobilization. Incorporating these factors in collection algorithms and improving assays for evaluating mobilization further extend the ability to obtain sufficient HSPCs for hematopoietic repopulation. Technological advance and innovations in leukapheresis have improved collection efficiency and reduced adverse effects.
Collapse
Affiliation(s)
- Yen-Michael S Hsu
- Pathology and Laboratory Medicine, Transfusion Medicine and Cellular Therapy, Weill Cornell Medical College, 525 East 68th Street, Box 251, New York, NY 10065, USA.
| | - Melissa M Cushing
- Transfusion Medicine and Cellular Therapy, Weill Cornell Medical College, 525 East 68th Street, Box 251, M09, New York, NY 10065, USA.
| |
Collapse
|
8
|
Li Z, Zhao R, Fang X, Huang Q, Liu J. Recombinant human SDF-1α administration accelerates aneurysm neck reendothelialization in rabbit saccular aneurysm after flow diverter treatment. Acta Biochim Biophys Sin (Shanghai) 2017; 49:246-253. [PMID: 28159982 DOI: 10.1093/abbs/gmx001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
Reendothelialization in the aneurysm neck is pivotal to vascular repair for intracranial aneurysm after flow diverter (FD) implantation. Recombinant human stromal cell-derived factor 1α (rhSDF-1α) is a vital chemoattractant to stem cells and potentially facilitates reendothelialization. Here, we sought to investigate the therapeutic effects of intravenous administration of rhSDF-1α and uncover its potential mechanism for promoting aneurysm neck reendothelialization. Recombinant pET32a-186 plasmid was transformed into Escherichia coli to produce the rhSDF-1α protein with biological activity. FD was implanted into the elastase-induced saccular aneurysm in New Zealand white rabbits. rhSDF-1α (50 μg/kg/day) was intravenously administrated for consecutive 7 days after FD implantation. After these procedures, aneurysms were harvested after 2 or 4 weeks. Scanning electron microscopy was used to measure the neointima thickness and count the endothelial-like cells at aneurysm neck. Four weeks later, the mRNA levels of endothelial markers in the neointima at aneurysm neck were examined. Migration assay showed that rhSDF-1α could induce migration of endothelial progenitor cells in a dose-dependent manner. Two weeks after stent implantation, follow-up angiography showed partial aneurysm occlusion in one of each group and total aneurysm occlusion in 17 saccular aneurysm rabbits (9 of the rhSDF-1α group and 8 of the control group). No significant change of neointima thickness at aneurysm neck was observed. Intriguingly, more endothelial-like cells were observed at aneurysm neck in the rhSDF-1α group at 2 weeks (55 vs 13 cells per high-power field) and 4 weeks (104 vs 60 cells per high-power field). The mRNA levels of Tie-2, VE-cadherin, KDR and E-selectin were significantly enhanced compared with those of the control group. These results showed that intravenous administration of rhSDF-1α can accelerate reendothelialization in the aneurysm neck after FD implantation. Our study reveals an important role of rhSDF-1α in inducing aneurysm occlusion and suggests that it achieves its function through modulating the reendothelialization.
Collapse
Affiliation(s)
- Zifu Li
- Neurosurgery Department, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Rui Zhao
- Neurosurgery Department, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xinggen Fang
- Neurosurgery Department, Yijishan Hospital, Wuhu 241001, China
| | - Qinghai Huang
- Neurosurgery Department, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jianmin Liu
- Neurosurgery Department, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, Shamaileh HA, Yin W, Zhou SF, Zhao X, Duan W. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget 2016; 6:44191-206. [PMID: 26496035 PMCID: PMC4792551 DOI: 10.18632/oncotarget.6176] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Tao Wang
- School of Nursing, Zhengzhou University, Zhengzhou, China.,School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Michael P Gantier
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Yingchun Hou
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, China
| | - Li Wang
- Department of Gynecologic Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Li
- Cancer Care Centre, St George Hospital and St George Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Hadi Al Shamaileh
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Wang Yin
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xinhan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
10
|
Combination of granulocyte colony-stimulating factor and CXCR4 antagonist AMD3100 for effective harvest of endothelial progenitor cells from peripheral blood and in vitro formation of primitive endothelial networks. Cell Tissue Bank 2015. [DOI: 10.1007/s10561-015-9527-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Zheng R, Park Y, Kim S, Cho J, Heo S, Koak J, Lee S, Park J, Lee J, Kim J. Bone Regeneration of Blood-derived Stem Cells within Dental Implants. J Dent Res 2015; 94:1318-25. [DOI: 10.1177/0022034515590368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peripheral blood (PB) is known as a source of mesenchymal stem cells (MSCs), as is bone marrow (BM), and is acquired easily. However, it is difficult to have enough MSCs, and their osteogenic capacity with dental implantations is scarce. Therefore, we characterized peripheral blood mesenchymal stem cells (PBMSCs) cultured on a bone marrow–derived mesenchymal stem cell (BMMSC) natural extracellular matrix (ECM) and demonstrated the osteogenic capability in an experimental chamber implant surgery model in rabbits. We isolated PBMSCs from rabbits by culturing on a natural ECM-coated plate during primary culture. We characterized the PBMSCs using a fluorescence-activated cell scanner, cell proliferation assay, and multiple differentiation assay and compared them with BMMSCs. We also analyzed the osteogenic potential of PBMSCs mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) by transplanting them into immunocompromised mice. Then, the mixture was applied to the canals. After 3 and 6 wk, we analyzed new bone (NB) formation inside the chambers using histological and histomorphometric analyses. The PBMSCs had a similar rate of BrdU-positive cells to BMMSCs, positively expressing CD90 but negative for CD14. The PBMSCs also showed osteogenic, adipogenic, and chondrogenic ability in vitro and osteogenic ability in vivo. Histological and histomorphometric results illustrated that the PBMSC and BMMSC groups showed higher NB than the HA/TCP and defect groups in the upper and lower chambers at 6 wk and in the upper canal at 3 wk; however, there was no difference in NB among all groups in the lower canal at 3 wk. The PBMSCs have characteristics and bone regeneration ability similar to BMMSCs both in vitro and in vivo. ECM was effective for obtaining PBMSCs. Therefore, PBMSCs are a promising source for bone regeneration for clinical use.
Collapse
Affiliation(s)
- R.C. Zheng
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Y.K. Park
- Department of Dental Research Institute, Brain Korea 21, Seoul National University, Seoul, South Korea
| | - S.K. Kim
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J. Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul, South Korea
| | - S.J. Heo
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J.Y. Koak
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - S.J. Lee
- Department of Orthodontics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J.M. Park
- Department of Prosthodontics, Seoul National University Gwanak Dental Hospital, Seoul, South Korea
| | - J.H. Lee
- Department of Prosthodontics, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - J.H. Kim
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
Schulenburg A, Blatt K, Cerny-Reiterer S, Sadovnik I, Herrmann H, Marian B, Grunt TW, Zielinski CC, Valent P. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol 2015; 8:16. [PMID: 25886184 PMCID: PMC4345016 DOI: 10.1186/s13045-015-0113-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 02/08/2023] Open
Abstract
Since their description and identification in leukemias and solid tumors, cancer stem cells (CSC) have been the subject of intensive research in translational oncology. Indeed, recent advances have led to the identification of CSC markers, CSC targets, and the preclinical and clinical evaluation of the CSC-eradicating (curative) potential of various drugs. However, although diverse CSC markers and targets have been identified, several questions remain, such as the origin and evolution of CSC, mechanisms underlying resistance of CSC against various targeted drugs, and the biochemical basis and function of stroma cell-CSC interactions in the so-called ‘stem cell niche.’ Additional aspects that have to be taken into account when considering CSC elimination as primary treatment-goal are the genomic plasticity and extensive subclone formation of CSC. Notably, various cell fractions with different combinations of molecular aberrations and varying proliferative potential may display CSC function in a given neoplasm, and the related molecular complexity of the genome in CSC subsets is considered to contribute essentially to disease evolution and acquired drug resistance. In the current article, we discuss new developments in the field of CSC research and whether these new concepts can be exploited in clinical practice in the future.
Collapse
Affiliation(s)
- Axel Schulenburg
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, A-1090, Wien, Austria. .,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Stem Cell Transplantation Unit, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Wien, Austria.
| | - Katharina Blatt
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Sabine Cerny-Reiterer
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Irina Sadovnik
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Harald Herrmann
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Radiation Therapy, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria.
| | - Brigitte Marian
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Institute for Cancer Research, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Thomas W Grunt
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Clinical Oncology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Christoph C Zielinski
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Clinical Oncology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| | - Peter Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Wien, Austria. .,Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Wien, Austria.
| |
Collapse
|
13
|
Singh VK, Wise SY, Fatanmi OO, Beattie LA, Ducey EJ, Seed TM. Alpha-tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice. JOURNAL OF RADIATION RESEARCH 2014; 55:41-53. [PMID: 23814114 PMCID: PMC3885121 DOI: 10.1093/jrr/rrt088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 05/28/2023]
Abstract
The purpose of this study was to elucidate the role of alpha-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating combined injury associated with acute radiation exposure in combination with secondary physical wounding. CD2F1 mice were exposed to high doses of cobalt-60 gamma-radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMCs) from TS- and AMD3100-injected mice after irradiation. Within 1 h after irradiation, mice were exposed to secondary wounding. Mice were observed for 30 d after irradiation and cytokine analysis was conducted by multiplex Luminex assay at various time-points after irradiation and wounding. Our results initially demonstrated that transfusion of TS-mobilized progenitors from normal mice enhanced survival of acutely irradiated mice exposed 24 h prior to transfusion to supralethal doses (11.5-12.5 Gy) of (60)Co gamma-radiation. Subsequently, comparable transfusions of TS-mobilized progenitors were shown to significantly mitigate severe combined injuries in acutely irradiated mice. TS administered 24 h before irradiation was able to protect mice against combined injury as well. Cytokine results demonstrated that wounding modulates irradiation-induced cytokines. This study further supports the conclusion that the infusion of TS-mobilized progenitor-containing PBMCs acts as a bridging therapy in radiation-combined-injury mice. We suggest that this novel bridging therapeutic approach involving the infusion of TS-mobilized hematopoietic progenitors following acute radiation exposure or combined injury might be applicable to humans.
Collapse
Affiliation(s)
- Vijay K. Singh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4417 Maple Avenue, Bethesda, MD, USA
| | - Stephen Y. Wise
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Oluseyi O. Fatanmi
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Lindsay A. Beattie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Elizabeth J. Ducey
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | | |
Collapse
|
14
|
Granulocyte colony-stimulating factor antibody abrogates radioprotective efficacy of gamma-tocotrienol, a promising radiation countermeasure. Cytokine 2013; 62:278-85. [DOI: 10.1016/j.cyto.2013.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/10/2013] [Accepted: 03/08/2013] [Indexed: 12/11/2022]
|
15
|
Yoder MC. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med (Berl) 2013; 91:285-95. [PMID: 23371317 PMCID: PMC3704045 DOI: 10.1007/s00109-013-1002-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/13/2013] [Indexed: 12/15/2022]
Abstract
The first reports of circulating cells that displayed the capacity to repair and regenerate damaged vascular endothelial cells as progenitor cells for the endothelial lineage (EPC) were met with great enthusiasm. However, the cell surface antigens and colony assays used to identify the putative EPC were soon found to overlap with those of the hematopoietic lineage. Over the past decade, it has become clear that specific hematopoietic subsets play important roles in vascular repair and regeneration. This review will provide some overview of the hematopoietic hierarchy and methods to segregate distinct subsets that may provide clarity in identifying the proangiogenic hematopoietic cells. This review will not discuss those circulating viable endothelial cells that play a role as EPC and are called endothelia colony-forming cells. The review will conclude with identification of some roadblocks to progress in the field of identification of circulating cells that participate in vascular repair and regeneration.
Collapse
Affiliation(s)
- Mervin C Yoder
- Hermann B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
16
|
Tanhehco YC, Vogl DT, Stadtmauer EA, O'Doherty U. The evolving role of plerixafor in hematopoietic progenitor cell mobilization. Transfusion 2013; 53:2314-26. [PMID: 23362980 DOI: 10.1111/trf.12102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 11/09/2012] [Accepted: 11/19/2012] [Indexed: 12/21/2022]
Abstract
The introduction of plerixafor as a peripheral blood stem cell mobilization agent has allowed more patients with multiple myeloma, non-Hodgkin's lymphoma, and Hodgkin's disease to mobilize sufficient hematopoietic progenitor cells (HPCs) to proceed to autologous transplantation. Because of the high cost of plerixafor, it is not routinely used in all patients undergoing HPC mobilization. If cost were not an issue, an argument could be made that plerixafor could be added to every mobilization regimen, but cost is an issue so in an attempt to be more cost-effective, many centers have limited plerixafor use to patients who have failed or who are predicted to fail collection of adequate numbers of cells by other methods. Additionally, plerixafor is now under investigation both for HPC collection of healthy donors for allogeneic stem cell transplantation and as an adjunct therapy (i.e., chemosensitizing agent) for acute leukemias. This article briefly reviews the role of plerixafor in autologous and allogeneic transplantation as well as its emerging role in the treatment of acute leukemias. Emphasis is placed on the choice of appropriate patients for plerixafor use to assure an adequate stem cell yield while maximizing the cost effectiveness of using plerixafor. The role of prophylactic collections and future areas of research are also presented.
Collapse
Affiliation(s)
- Yvette C Tanhehco
- Department of Pathology and Cell Biology, Columbia University, New York, New York; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
17
|
Abstract
Peripheral blood is a large accessible source of adult stem cells for both basic research and clinical applications. Peripheral blood mononuclear cells (PBMCs) have been reported to contain a multitude of distinct multipotent progenitor cell populations and possess the potential to differentiate into blood cells, endothelial cells, hepatocytes, cardiomyogenic cells, smooth muscle cells, osteoblasts, osteoclasts, epithelial cells, neural cells, or myofibroblasts under appropriate conditions. Furthermore, transplantation of these PBMC-derived cells can regenerate tissues and restore function after injury. This mini-review summarizes the multi-differentiation potential of PBMCs reported in the past years, discusses the possible mechanisms for this multi-differentiation potential, and describes recent techniques for efficient PBMC isolation and purification.
Collapse
|
18
|
Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, Chomienne C, Ishikawa F, Schuringa JJ, Stassi G, Huntly B, Herrmann H, Soulier J, Roesch A, Schuurhuis GJ, Wöhrer S, Arock M, Zuber J, Cerny-Reiterer S, Johnsen HE, Andreeff M, Eaves C. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 2012; 12:767-75. [PMID: 23051844 DOI: 10.1038/nrc3368] [Citation(s) in RCA: 523] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cancer stem cell (CSC) concept has important therapeutic implications, but its investigation has been hampered both by a lack of consistency in the terms used for these cells and by how they are defined. Evidence of their heterogeneous origins, frequencies and their genomic, as well as their phenotypic and functional, properties has added to the confusion and has fuelled new ideas and controversies. Participants in The Year 2011 Working Conference on CSCs met to review these issues and to propose a conceptual and practical framework for CSC terminology. More precise reporting of the parameters that are used to identify CSCs and to attribute responses to them is also recommended as key to accelerating an understanding of their biology and developing more effective methods for their eradication in patients.
Collapse
Affiliation(s)
- Peter Valent
- The Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna & Ludwig-Boltzmann Cluster Oncology, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fu WL, Zhang JY, Fu X, Duan XN, Leung KKM, Jia ZQ, Wang WP, Zhou CY, Yu JK. Comparative Study of the Biological Characteristics of Mesenchymal Stem Cells from Bone Marrow and Peripheral Blood of Rats. Tissue Eng Part A 2012; 18:1793-803. [PMID: 22721583 DOI: 10.1089/ten.tea.2011.0530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Wei-Li Fu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen HJ, Edwards R, Tucci S, Bu P, Milsom J, Lee S, Edelmann W, Gümüs ZH, Shen X, Lipkin S. Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis. J Clin Invest 2012; 122:3184-96. [PMID: 22863617 DOI: 10.1172/jci62110] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 06/14/2012] [Indexed: 02/06/2023] Open
Abstract
Chemotactic cytokines (chemokines) can help regulate tumor cell invasion and metastasis. Here, we show that chemokine 25 (CCL25) and its cognate receptor chemokine receptor 9 (CCR9) inhibit colorectal cancer (CRC) invasion and metastasis. We found that CCR9 protein expression levels were highest in colon adenomas and progressively decreased in invasive and metastatic CRCs. CCR9 was expressed in both primary tumor cell cultures and colon-cancer-initiating cell (CCIC) lines derived from early-stage CRCs but not from metastatic CRC. CCL25 stimulated cell proliferation by activating AKT signaling. In vivo, systemically injected CCR9+ early-stage CCICs led to the formation of orthotopic gastrointestinal xenograft tumors. Blocking CCR9 signaling inhibited CRC tumor formation in the native gastrointestinal CCL25+ microenvironment, while increasing extraintestinal tumor incidence. NOTCH signaling, which promotes CRC metastasis, increased extraintestinal tumor frequency by stimulating CCR9 proteasomal degradation. Overall, these data indicate that CCL25 and CCR9 regulate CRC progression and invasion and further demonstrate an appropriate in vivo experimental system to study CRC progression in the native colon microenvironment.
Collapse
Affiliation(s)
- Huanhuan Joyce Chen
- Department of Medicine, Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol 2012; 3:213. [PMID: 22723782 PMCID: PMC3379724 DOI: 10.3389/fphys.2012.00213] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/30/2012] [Indexed: 11/25/2022] Open
Abstract
Chemokines are small molecular weight proteins primarily known to drive migration of immune cell populations. In both acute and chronic liver injury, hepatic chemokine expression is induced resulting in inflammatory cell infiltration, angiogenesis, and cell activation and survival. During acute injury, massive parenchymal cell death due to apoptosis and/or necrosis leads to chemokine production by hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells, and sinusoidal endothelial cells. The specific chemokine profile expressed during injury is dependent on both the type and course of injury. Hepatotoxicity by acetaminophen for example leads to cellular necrosis and activation of Toll-like receptors while the inciting insult in ischemia reperfusion injury produces reactive oxygen species and subsequent production of pro-inflammatory chemokines. Chemokine expression by these cells generates a chemoattractant gradient promoting infiltration by monocytes/macrophages, NK cells, NKT cells, neutrophils, B cells, and T cells whose activity are highly regulated by the specific chemokine profiles within the liver. Additionally, resident hepatic cells express chemokine receptors both in the normal and injured liver. While the role of these receptors in normal liver has not been well described, during injury, receptor up-regulation, and chemokine engagement leads to cellular survival, proliferation, apoptosis, fibrogenesis, and expression of additional chemokines and growth factors. Hepatic-derived chemokines can therefore function in both paracrine and autocrine fashions further expanding their role in liver disease. More recently it has been appreciated that chemokines can have diverging effects depending on their temporal expression pattern and the type of injury. A better understanding of chemokine/chemokine receptor axes will therefore pave the way for development of novel targeted therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yedidya Saiman
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
22
|
Singh PK, Wise SY, Ducey EJ, Brown DS, Singh VK. Radioprotective efficacy of tocopherol succinate is mediated through granulocyte-colony stimulating factor. Cytokine 2011; 56:411-21. [DOI: 10.1016/j.cyto.2011.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/14/2011] [Accepted: 08/05/2011] [Indexed: 12/17/2022]
|
23
|
Singh VK, Singh PK, Wise SY, Seed TM. Mobilized progenitor cells as a bridging therapy for radiation casualties: A brief review of tocopherol succinate-based approaches. Int Immunopharmacol 2011; 11:842-47. [DOI: 10.1016/j.intimp.2011.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/11/2022]
|