1
|
Li H, Cheng Z, Wu D, Hu Q. Nitric oxide and mitochondrial function in cardiovascular diseases. Nitric Oxide 2025; 154:42-50. [PMID: 39577487 DOI: 10.1016/j.niox.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Nitric oxide (NO) has been highlighted as an important factor in cardiovascular system. As a signaling molecule in the cardiovascular system, NO can relax blood vessels, lower blood pressure, and prevent platelet aggregation. Mitochondria serve as a central hub for cellular metabolism and intracellular signaling, and their dysfunction can lead to a variety of diseases. Accumulating evidence suggests that NO can act as a regulator of mitochondria, affecting mitochondrial function and cellular activity, which in turn mediates the onset and progression of disease. However, there is a lack of comprehensive understanding of how NO regulates mitochondrial function in the cardiovascular system. This review aims to summarize the regulation of mitochondrial function by nitric oxide in cardiovascular related diseases, as well as the multifaceted and complex roles of NO in the cardiovascular system. Understanding the mechanism of NO mediated mitochondrial function can provide new insights for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Haoqi Li
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zijie Cheng
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Liang F, Wang M, Li J, Guo J. The evolution of S-nitrosylation detection methodology and the role of protein S-nitrosylation in various cancers. Cancer Cell Int 2024; 24:408. [PMID: 39702281 DOI: 10.1186/s12935-024-03568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
S-nitrosylation (SNO) modification, a nitric oxide (NO)-mediated post-translational modification (PTM) of proteins, plays an important role in protein microstructure, degradation, activity, and stability. Due to the presence of reducing agents, the SNO modification process mediated by NO derivatives is often reversible and unstable. This reversible transformation between SNO modification and denitrification often influences the structure, activity, and function of proteins. The reversibility of SNO modifications also poses a challenge when verifying changes in the biological functions of proteins. Moreover, SNO modification of key signaling pathway proteins, such as caspase-3, NF-κB, and Bcl-2, can affect tumor proliferation, invasion, and apoptosis. The SNO-modified proteins play important roles in both promoting and inhibiting cancer, which indirectly confirms the duality and complexity of SNO modification functions. This article reviews the biological significance of various SNO-modified proteins in different cancers, providing a theoretical basis for determining whether the related changes of SNO-modified proteins are universal in cancers. Additionally, this review presents a comprehensive and detailed summary of the evolution of detection methods for SNO-modified proteins, providing a possible methodological basis for future research on SNO-modified proteins.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Majewska AM, Mostek A. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review. Electrophoresis 2021; 42:1378-1387. [PMID: 33783010 DOI: 10.1002/elps.202000389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
The specific chemical reactivity of thiol groups makes protein cysteines susceptible to reactions with reactive oxygen species (ROS) and reactive nitrogen species (RNS) resulting in the formation of various reversible and irreversible oxidative post-translational modifications (oxPTMs). This review highlights a number of gel-based redox proteomic approaches to detect protein oxPTMs, with particular emphasis on S-nitrosylation, which we believe are currently one of the most accurate way to analyze changes in the redox status of proteins. The information collected in this review relates to the recent progress regarding methods for the enrichment and identification of redox-modified proteins, with an emphasis on fluorescent gel proteomics. Gel-based fluorescent proteomic strategies are low-cost and easy-to-use tools for investigating the thiol proteome and can provide substantial information on redox signaling.
Collapse
Affiliation(s)
- Anna M Majewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Mostek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
4
|
López-Sánchez LM, Aranda E, Rodríguez-Ariza A. Nitric oxide and tumor metabolic reprogramming. Biochem Pharmacol 2019; 176:113769. [PMID: 31862448 DOI: 10.1016/j.bcp.2019.113769] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) has been highlighted as an important agent in tumor processes. However, a complete understanding of the mechanisms by which this simple diatomic molecule contributes in tumorigenesis is lacking. Evidence is rapidly accumulating that metabolic reprogramming is a major new aspect of NO biology and this review is aimed to summarize recent research progress on this novel feature that expands the complex and multifaceted role of NO in cancer. Therefore, we discuss how NO may influence glucose and glutamine utilization by tumor cells, and its participation in the regulation of mitochondrial function and dynamics, that is an important mechanism through which cancer cells reprogram their metabolism to meet the biosynthetic needs of rapid proliferation. Finally, we also discuss the NO-related metabolic rewiring involved in the modification of the tumor microenvironment to support cancer invasion and the escape from immune system-mediated recognition. Protein S-nitrosylation appears as a common mechanism by which NO signaling reprograms metabolism. Hence, future research is needed on dysregulated S-nitrosylation/denitrosylation in cancer to comprehend the NO-induced metabolic changes in tumor cells and the role of NO in the metabolic crosstalk within tumor microenvironment.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain.
| |
Collapse
|
5
|
Chung MC, Alem F, Hamer SG, Narayanan A, Shatalin K, Bailey C, Nudler E, Hakami RM. S-nitrosylation of peroxiredoxin 1 contributes to viability of lung epithelial cells during Bacillus anthracis infection. Biochim Biophys Acta Gen Subj 2016; 1861:3019-3029. [PMID: 27612662 DOI: 10.1016/j.bbagen.2016.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/30/2016] [Accepted: 09/04/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Using Bacillus anthracis as a model gram-positive bacterium, we investigated the effects of host protein S-nitrosylation during bacterial infection. B. anthracis possesses a bacterial nitric oxide synthase (bNOS) that is important for its virulence and survival. However, the role of S-nitrosylation of host cell proteins during B. anthracis infection has not been determined. METHODS Nitrosoproteomic analysis of human small airway epithelial cells (HSAECs) infected with toxigenic B. anthracis Sterne was performed, identifying peroxiredoxin 1 (Prx1) as one predominant target. Peroxidase activity of Prx during infection was measured using 2-Cys-Peroxiredoxin activity assay. Chaperone activity of S-nitrosylated Prx1 was measured by insulin aggregation assay, and analysis of formation of multimeric species using Native PAGE. Griess assay and DAF-2DA fluorescence assay were used to measure NO production. Cell viability was measured using the Alamar Blue assay and the ATPlite assay (Perkin Elmer). RESULTS S-nitrosylation of Prx1 in Sterne-infected HSAECs leads to a decrease in its peroxidase activity while enhancing its chaperone function. Treatment with bNOS inhibitor, or infection with bNOS deletion strain, reduces S-nitrosylation of Prx1 and decreases host cell survival. Consistent with this, siRNA knockdown of Prx1 lowers bNOS-dependent protection of HSAEC viability. CONCLUSIONS Anthrax infection results in S-nitrosylation of multiple host proteins, including Prx1. The nitrosylation-dependent decrease in peroxidase activity of Prx1 and increase in its chaperone activity is one factor contributing to enhancing infected cell viability. GENERAL SIGNIFICANCE These results provide a new venue of mechanistic investigation for inhalational anthrax that could lead to novel and potentially effective countermeasures.
Collapse
Affiliation(s)
- Myung-Chul Chung
- School of Systems Biology, and the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, USA
| | - Farhang Alem
- School of Systems Biology, and the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, USA
| | - Sarah G Hamer
- School of Systems Biology, and the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, USA
| | - Aarthi Narayanan
- School of Systems Biology, and the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, USA
| | - Konstantin Shatalin
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Charles Bailey
- School of Systems Biology, and the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Ramin M Hakami
- School of Systems Biology, and the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, USA.
| |
Collapse
|
6
|
Cañas A, López-Sánchez LM, Peñarando J, Valverde A, Conde F, Hernández V, Fuentes E, López-Pedrera C, de la Haba-Rodríguez JR, Aranda E, Rodríguez-Ariza A. Altered S-nitrosothiol homeostasis provides a survival advantage to breast cancer cells in HER2 tumors and reduces their sensitivity to trastuzumab. Biochim Biophys Acta Mol Basis Dis 2016; 1862:601-610. [PMID: 26854735 DOI: 10.1016/j.bbadis.2016.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/23/2023]
Abstract
The monoclonal antibody trastuzumab against HER2/neu, which is overexpressed in 15-20% of breast cancers, has clinical efficacy but many patients do not respond to initial treatment or develop resistance during treatment. Nitric oxide (NO) regulates cell signaling by targeting specific cysteine residues in proteins, forming S-nitrosothiols (SNO) in a process known as S-nitrosylation. We previously reported that molecular characteristics in breast cancer may dictate the tumor response to impaired SNO homeostasis. In the present study, we explored the role of SNO homeostasis in HER2 breast tumors. The antiproliferative action of trastuzumab in HER2-overexpressing BT-474 and SKBR-3 cells was suppressed when S-nitrosoglutathione reductase (GSNOR/ADH5) activity, which plays a key role in SNO homeostasis, was specifically inhibited with the pyrrole derivative compound N6022. Moreover, GSNOR inhibition restored the activation of survival signaling pathways involved in the resistance to anti-HER2 therapies (AKT, Src and c-Abl kinases and TrkA/NRTK1, TrkB/NRTK2, EphA1 and EphA3 receptors) and reduced the apoptotic effect of trastuzumab. Accordingly, GSNOR inhibition augmented the S-nitrosylation of apoptosis-related proteins, including Apaf-1, pSer73/63 c-Jun, calcineurin subunit α and HSF1. In agreement with in vitro data, immunohistochemical analyses of 51 breast tumors showed that HER2 expression was associated with lower expression of GSNOR protein. Moreover, gene expression analysis confirmed that high ADH5/GSNOR gene expression was associated with high patient survival rates in HER2 tumors. In conclusion, our data provide evidence of molecular mechanisms contributing to the progression of HER2+ breast cancers and could facilitate the development of therapeutic options to counteract resistance to anti-HER2 therapies.
Collapse
Affiliation(s)
- Amanda Cañas
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura M López-Sánchez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jon Peñarando
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Araceli Valverde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Francisco Conde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Vanessa Hernández
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Fuentes
- Pathology Department, IMIBIC, Reina Sofía Hospital, University of Córdoba, Spain.
| | - Chary López-Pedrera
- Research Unit, IMIBIC, Reina Sofía Hospital, University of Córdoba, Córdoba, Spain.
| | - Juan R de la Haba-Rodríguez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Enrique Aranda
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Rodríguez-Ariza
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Spain; Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Methods for detection and characterization of protein S-nitrosylation. Methods 2013; 62:138-50. [PMID: 23628946 DOI: 10.1016/j.ymeth.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/24/2022] Open
Abstract
Reversible protein S-nitrosylation, defined as the covalent addition of a nitroso moiety to the reactive thiol group on a cysteine residue, has received increasing recognition as a critical post-translational modification that exerts ubiquitous influence in a wide range of cellular pathways and physiological processes. Due to the lability of the S-NO bond, which is a dynamic modification, and the low abundance of endogenously S-nitrosylated proteins in vivo, unambiguous identification of S-nitrosylated proteins and S-nitrosylation sites remains methodologically challenging. In this review, we summarize recent advancements and the use of state-of-art approaches for the enrichment, systematic identification and quantitation of S-nitrosylation protein targets and their modification sites at the S-nitrosoproteome scale. These advancements have facilitated the global identification of >3000 S-nitrosylated proteins that are associated with wide range of human diseases. These strategies hold promise to site-specifically unravel potential molecular targets and to change S-nitrosylation-based pathophysiology, which may further the understanding of the potential role of S-nitrosylation in diseases.
Collapse
|
8
|
Chen X, Wei S, Yang F. Mitochondria in the pathogenesis of diabetes: a proteomic view. Protein Cell 2012; 3:648-60. [PMID: 22729395 DOI: 10.1007/s13238-012-2043-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is a complex metabolic disorder characterized by chronic hyperglycemia due to absolute or relative lack of insulin. Though great efforts have been made to investigate the pathogenesis of diabetes, the underlying mechanism behind the development of diabetes and its complications remains unexplored. Cumulative evidence has linked mitochondrial modification to the pathogenesis of diabetes and its complications and they are also observed in various tissues affected by diabetes. Proteomics is an attractive tool for the study of diabetes since it allows researchers to compare normal and diabetic samples by identifying and quantifying the differentially expressed proteins in tissues, cells or organelles. Great progress has already been made in mitochondrial proteomics to elucidate the role of mitochondria in the pathogenesis of diabetes and its complications. Further studies on the changes of mitochondrial protein specifically post-translational modifications during the diabetic state using proteomic tools, would provide more information to better understand diabetes.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | |
Collapse
|