1
|
Noyan S, Dedeoğlu BG. Upregulation of miR-99b-5p Modulates ESR1 Expression as an Adaptive Mechanism to Circumvent Drug Response via Facilitating ER/HER2 Crosstalk. Balkan Med J 2025; 42:150-156. [PMID: 40033677 PMCID: PMC11881538 DOI: 10.4274/balkanmedj.galenos.2025.2024-12-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Background Endocrine resistance remains a significant therapeutic challenge in estrogen receptor-positive (ER+) breast cancer, the most common subtype, contributing to increased morbidity and mortality. The interaction between ER and HER family receptors, particularly HER2 and epidermal growth factor receptor (EGFR), drives resistance to standard therapies such as tamoxifen and trastuzumab by activating key signaling pathways, including PI3K/AKT and RAS/MAPK. Dysregulated miRNAs, which are non-coding gene expression regulators, have been linked to therapy response. Aims To investigate the role of miR-99b-5p in ER-HER2/EGFR crosstalk in BT-474 cells. Study Design Experimental study. Methods The expression profile and prognostic significance of miR- 99b-5p in breast cancer were analyzed using The Cancer Genome Atlas (TCGA) database. BT-474 cells were transfected with miR-99b-5p mimics and inhibitors, followed by treatment with tamoxifen and trastuzumab to assess their impact on cell proliferation and ER-HER2/EGFR crosstalk. Western blotting was performed to quantify EGFR, HER2, and ESR1 protein levels. Real-time proliferation analysis evaluated changes in cell growth following miRNA transfection and drug treatment. Results The study revealed that miR-99b-5p is significantly overexpressed in tumors compared to normal tissues and is associated with poor patient survival and enhanced ER signaling. Transfection with miR-99b-5p mimics increased ESR1 expression and cell proliferation, even in the presence of tamoxifen or trastuzumab, indicating that miR-99b-5p contributes to therapy resistance through receptor crosstalk. Conversely, miR-99b-5p inhibition significantly restored drug sensitivity, reducing proliferation and enhancing the effectiveness of tamoxifen and trastuzumab. Conclusion These findings establish miR-99b-5p as a key regulator of endocrine and HER2-targeted therapy resistance. Targeting miR-99b-5p could represent a potential therapeutic strategy to improve treatment outcomes in ER+/HER2+ breast cancer. Further research is needed to clarify the underlying molecular mechanisms and validate the therapeutic potential of miR-99b-5p inhibition in clinical applications.
Collapse
Affiliation(s)
- Senem Noyan
- Biotechnology Institute Ankara University, Ankara, Türkiye
| | | |
Collapse
|
2
|
Bahnassy S, Stires H, Jin L, Tam S, Mobin D, Balachandran M, Podar M, McCoy MD, Beckman RA, Riggins RB. Unraveling Vulnerabilities in Endocrine Therapy-Resistant HER2+/ER+ Breast Cancer. Endocrinology 2023; 164:bqad159. [PMID: 37897495 PMCID: PMC10651073 DOI: 10.1210/endocr/bqad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/estrogen receptor-positive (HER2+/ER+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of patients with HER2+/ER+ receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized 2 in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. To mimic ETR to aromatase inhibitors (AIs), we developed 2 long-term estrogen deprivation (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 subtyping, and genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of aggressive MM361 LTEDs identified mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and ferroptosis-associated antioxidant genes, including GPX4. Combining a GPX4 inhibitor with anti-HER2 agents induced significant cell death in both MM361 and BT474 LTEDs. The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.
Collapse
Affiliation(s)
- Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Stanley Tam
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Dua Mobin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Manasi Balachandran
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Mircea Podar
- Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Matthew D McCoy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Robert A Beckman
- Department of Oncology and of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC 20007, USA
- Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
3
|
Bahnassy S, Stires H, Jin L, Tam S, Mobin D, Balachandran M, Podar M, McCoy MD, Beckman RA, Riggins RB. Unraveling Vulnerabilities in Endocrine Therapy-Resistant HER2+/ER+ Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554116. [PMID: 37662291 PMCID: PMC10473676 DOI: 10.1101/2023.08.21.554116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/ estrogen receptor-positive (HER2+/HR+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of HER2+/ER+ patients receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized two distinct in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. Methods To mimic ETR to aromatase inhibitors (AI), we developed two long-term estrogen-deprived (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 molecular subtyping, genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Results Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of the more aggressive MM361 LTED model system identified exonic mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and antioxidant genes associated with ferroptosis, including GPX4. Combining the GPX4 inhibitor RSL3 with anti-HER2 agents induced significant cell death in both the MM361 and BT474 LTEDs. Conclusions The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.
Collapse
Affiliation(s)
- Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | | | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Stanley Tam
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Dua Mobin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Manasi Balachandran
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN
| | | | - Matthew D. McCoy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Robert A. Beckman
- Departments of Oncology and of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| |
Collapse
|
4
|
Nahleh ZA, Elimimian EB, Elson LC, Hobbs B, Wei W, Blake CN. Endocrine Therapy Plus Anti-HER2 Therapy as Adjuvant Systemic Therapy for Luminal HER2-Positive Breast Cancer: An Analysis of the National Cancer Database. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223420945694. [PMID: 32821110 PMCID: PMC7412624 DOI: 10.1177/1178223420945694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/12/2020] [Indexed: 01/04/2023]
Abstract
Background: Guidelines regarding the usage of adjuvant systemic therapy in patients with small human epidermal growth factor receptor 2 (HER2)-positive and estrogen receptor/progesterone receptor–positive (luminal HER2 positive) tumors are nonspecific. Outcomes of chemotherapy followed by endocrine therapy (ET), with or without anti-HER2 therapy, vs ET alone (no chemotherapy) have not been widely studied in this disease subtype. We sought to examine the usage and outcomes of adjuvant systemic therapy (ET vs chemotherapy with or without trastuzumab) in stage I luminal HER2-positive breast cancer (BC), based on the large National Cancer Database. Methods: We conducted a retrospective analysis of patients with luminal HER2-positive stage I BC, diagnosed between 2010 and 2015, in the United States, using univariable and multivariable logistic regression analyses. The Kaplan-Meier method estimated overall survival (OS). Results: A total of 37 777 patients were included in the analysis; of these, n = 32 594 (86%) received adjuvant ET and n = 5183 (14%) received chemotherapy. Around 40% of all patients received anti-HER2 therapy (trastuzumab). Patients who received trastuzumab had a better 5-year OS (93.4% vs 92.0%, P = .0002) compared with those who did not. Patients who received anti-HER2 therapy plus ET had the best OS rate at 5 years (93.5%, confidence interval [CI]: 89.2%-98%, P < .0001) compared with those receiving anti-HER2 therapy plus chemotherapy (92.7%, CI: 89.4%-96.1%, P < .0001). Conclusions: Most patients in the United States, with stage I luminal HER2 positive BC, received ET, not chemotherapy but most of them do not receive anti-HER2 therapy resulting in inferior outcome. Future trials exploring the de-escalation of systemic adjuvant therapy for early-stage luminal HER2-positive BC to ET plus anti-HER2 therapy would be desirable.
Collapse
Affiliation(s)
- Zeina A Nahleh
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Elizabeth B Elimimian
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Leah C Elson
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Brian Hobbs
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Wei
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cassann N Blake
- Department of Surgery, Cleveland Clinic Florida, Weston, FL, USA
| |
Collapse
|
5
|
Goutsouliak K, Veeraraghavan J, Sethunath V, De Angelis C, Osborne CK, Rimawi MF, Schiff R. Towards personalized treatment for early stage HER2-positive breast cancer. Nat Rev Clin Oncol 2020; 17:233-250. [PMID: 31836877 PMCID: PMC8023395 DOI: 10.1038/s41571-019-0299-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Advances in HER2-targeted therapies have improved the survival of patients with HER2-positive breast cancer. The standard-of-care treatment for localized disease has been chemotherapy and 1 year of adjuvant HER2-targeted therapy, typically with the anti-HER2 antibody trastuzumab. Despite the effectiveness of this treatment, disease relapse occurs in a subset of patients; thus, focus has been placed on escalating treatment by either combining different HER2-targeted agents or extending the duration of HER2-targeted therapy. Indeed, dual HER2-targeted therapies and extended-duration anti-HER2 therapy, as well as adjuvant therapy with the anti-HER2 antibody-drug conjugate T-DM1, have all been approved for clinical use. Emerging evidence suggests, however, that some patients do not derive sufficient benefit from these additional therapies to offset the associated toxicities and/or costs. Similarly, the universal use of chemotherapy might not benefit all patients, and treatment de-escalation through omission of chemotherapy has shown promise in clinical trials and is currently being explored further. The future of precision medicine should therefore involve tailoring of therapy based on the genetics and biology of each tumour and the clinical characteristics of each patient. Predictive biomarkers that enable the identification of patients who will benefit from either escalated or de-escalated treatment will be crucial to this approach. In this Review, we summarize the available HER2-targeted agents and associated mechanisms of resistance, and describe the current therapeutic landscape of early stage HER2-positive breast cancer, focusing on strategies for treatment escalation or de-escalation.
Collapse
Affiliation(s)
- Kristina Goutsouliak
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jamunarani Veeraraghavan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vidyalakshmi Sethunath
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - C Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mothaffar F Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Parmar V, Nair NS, Thakkar P, Chitkara G. Molecular Biology in the Breast Clinics-Current status and future perspectives. Indian J Surg Oncol 2019; 12:7-20. [PMID: 33994723 DOI: 10.1007/s13193-019-00954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022] Open
Abstract
Breast cancer is no longer considered a single disease, and with better understanding of cancer biology, its management has evolved over the years, into a complex individualized use of therapeutics based on variable expressions of predictive and prognostic factors. With the advent of molecular and genetic research, the complexity and diversity of breast cancer cells and their ability to survive and develop resistance to treatment strategies became more evident. At the same time, targeted therapies evolved, as specific targets were discovered such as HER2 receptor, and androgen receptor. More recent is the development of immunotherapy which aims at strengthening the host immune system to identify and kill the tumor cells. In breast cancer treatment, use of molecular tests has been a target of controversies, due to their high costs and inaccessibility in limited resource situations. Research in breast cancer is also proceeding at a rapid pace, but it is important to remember that breast cancer continues to be a complex interplay of alterations at molecular and genetic level, with the variability in expressions at protein level leading to difference in behavior and responses to treatment and overall outcome. In the succeeding paragraphs, we will try to review the available evidence in literature and attempt to understand the molecular complexity of breast cancer in order to simplify the art of treating the disease and improving outcomes.
Collapse
Affiliation(s)
- Vani Parmar
- Breast Unit, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210 India
| | - Nita S Nair
- Breast Unit, Tata Memorial Centre, Tata Memorial Hospital, Ernest Borges Rd, Parel, Mumbai, 400012 India
| | - Purvi Thakkar
- Breast Unit, Tata Memorial Centre, Tata Memorial Hospital, Ernest Borges Rd, Parel, Mumbai, 400012 India
| | - Garvit Chitkara
- Breast Unit, Tata Memorial Centre, Tata Memorial Hospital, Ernest Borges Rd, Parel, Mumbai, 400012 India
| |
Collapse
|
7
|
Gene Expression and miRNAs Profiling: Function and Regulation in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Breast Cancer. Cancers (Basel) 2019; 11:cancers11050646. [PMID: 31083383 PMCID: PMC6562440 DOI: 10.3390/cancers11050646] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second most common cause of cancer-related deaths among women worldwide. It is a heterogeneous disease with four major molecular subtypes. One of the subtypes, human epidermal growth factor receptor 2 (HER2)-enriched (HER2-positive) is characterized by the absence of estrogen and progesterone receptors and overexpression of HER2 receptor, and accounts for 15–20% of all breast cancers. Despite the anti-HER2 and cytotoxic chemotherapy, HER2 subtype is an aggressive disease with significant mortality. Recent advances in molecular biology techniques, including gene expression profiling, proteomics, and microRNA analysis, have been extensively used to explore the underlying mechanisms behind human breast carcinogenesis and metastasis including HER2-positive breast cancer, paving the way for developing new targeted therapies. This review focuses on recent advances on gene expression and miRNA status in HER2-positive breast cancer.
Collapse
|
8
|
Lousberg L, Collignon J, Jerusalem G. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies. Ther Adv Med Oncol 2016; 8:429-449. [PMID: 27800032 DOI: 10.1177/1758834016665077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this article, we focus on the subtype of estrogen receptor (ER)-positive, human epidermal growth factor 2 (HER2)-positive breast cancer (BC). Preclinical and clinical data indicate a complex molecular bidirectional crosstalk between the ER and HER2 pathways. This crosstalk probably constitutes one of the key mechanisms of drug resistance in this subclass of BC. Delaying or even reversing drug resistance seems possible by targeting pathways implicated in this crosstalk. High-risk patients currently receive anti-HER2 therapy, chemotherapy and endocrine therapy in the adjuvant setting. In metastatic cases, most patients receive a combination of anti-HER2 therapy and chemotherapy. Only selected patients presenting more indolent disease are candidates for combinations of anti-HER2 therapy and endocrine therapy. However, relative improvements in progression-free survival by chemotherapy-based regimens are usually lower in ER-positive patients than the ER-negative and HER2-positive subgroup. Consequently, new approaches aiming to overcome endocrine therapy resistance by adding targeted therapies to endocrine therapy based regimens are currently explored. In addition, dual blockade of HER2 or the combination of trastuzumab and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOP) inhibitors targeting the downstream pathway are strategies to overcome resistance to trastuzumab. This may lead in the near future to the less frequent use of chemotherapy-based treatment options in ER-positive, HER2-positive BC.
Collapse
Affiliation(s)
| | | | - Guy Jerusalem
- CHU Liege and Liege University, Place du 20 Août 7, Liege, Belgium
| |
Collapse
|
9
|
Luqmani YA, Alam-Eldin N. Overcoming Resistance to Endocrine Therapy in Breast Cancer: New Approaches to a Nagging Problem. Med Princ Pract 2016; 25 Suppl 2:28-40. [PMID: 26849149 PMCID: PMC5588530 DOI: 10.1159/000444451] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/04/2016] [Indexed: 01/02/2023] Open
Abstract
In the majority of women, breast cancer progresses through increased transcriptional activity due to over-expressed oestrogen receptors (ER). Therapeutic strategies include: (i) reduction of circulating ovarian oestrogens or of peripherally produced oestrogen (in postmenopausal women) with aromatase inhibitors and (ii) application of selective ER modulators for receptor blockade. The success of these interventions is limited by the variable but persistent onset of acquired resistance and by an intrinsic refractiveness which manifests despite adequate levels of ER in about 50% of patients with advanced metastatic disease. Loss of functional ER leads to endocrine insensitivity, loss of cellular adhesion and polarity, and increased migratory potential due to trans-differentiation of the epithelial cancer cells into a mesenchymal-like phenotype (epithelial-mesenchymal transition; EMT). Multiple mechanisms contributing to therapeutic failure have been proposed: (i) loss or modification of ER expression including epigenetic mechanisms, (ii) agonistic actions of selective ER modulators that may be enhanced through an increased expression of co-activators, (iii) attenuation of the tamoxifen metabolism through expression of genetic variants of P450 cytochromes which leads to more or less active metabolites and (iv) increased growth factor signalling particularly through epidermal growth factor receptor activation of pathways involving keratinocyte growth factor, platelet-derived growth factor, and nuclear factor x03BA;B. In addition, the small non-coding microRNAs, recently recognized as critical gene regulators, exhibit differential expression in tamoxifen-sensitive versus resistant cell lines. Several studies suggest the potential of using these either as targets or as therapeutic agents to modulate EMT regulators as a means of reversing the aggressive metastatic phenotype by reversal of the EMT, with the added benefit of re-sensitization to anti-oestrogens.
Collapse
Affiliation(s)
- Yunus A. Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
10
|
Austreid E, Lonning PE, Eikesdal HP. The emergence of targeted drugs in breast cancer to prevent resistance to endocrine treatment and chemotherapy. Expert Opin Pharmacother 2014; 15:681-700. [PMID: 24579888 DOI: 10.1517/14656566.2014.885952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Deregulated signaling pathways are associated with resistance to chemotherapy and endocrine treatment, providing a rationale for the implementation of novel targeted therapies in breast cancer therapy. Key molecules targeted therapeutically in ongoing clinical breast cancer trials are phosphoinositide 3-kinase-Akt-mammalian target of rapamycin (mTOR), Src, insulin-like growth factor 1 receptor, heat shock protein-90, histone deacetylases, cyclin-dependent kinases (CDKs), Notch and human epidermal growth factor receptors (HERs). AREAS COVERED This review provides an overview of novel targeted agents currently explored in clinical breast cancer trials and registered in ClinicalTrials.gov. The main focus will be on their ability to prevent or reverse endocrine resistance and chemoresistance in breast cancer. EXPERT OPINION HER2 targeted agents have extended survival substantially, both in the adjuvant and metastatic setting, pointing to a crucial dependency on this pathway in HER2-amplified breast cancer, including drug resistance reversal. While data on mTOR inhibitors are encouraging and preliminary results on CDK4/6 and Src inhibitors exciting, so far other targeted agents have been of limited benefit when added in concert with conventional therapies. Future clinical trials should systematically explore biomarkers and defects in functional gene cascades to identify relevant biological mechanisms to be targeted therapeutically in breast cancer.
Collapse
Affiliation(s)
- Eilin Austreid
- University of Bergen, Department of Clinical Science, Section of Oncology , Bergen , Norway
| | | | | |
Collapse
|
11
|
Gupta A, Mehta R, Alimirah F, Peng X, Murillo G, Wiehle R, Mehta RG. Efficacy and mechanism of action of Proellex, an antiprogestin in aromatase overexpressing and Letrozole resistant T47D breast cancer cells. J Steroid Biochem Mol Biol 2013; 133:30-42. [PMID: 22939887 DOI: 10.1016/j.jsbmb.2012.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 12/20/2022]
Abstract
Aromatase inhibitors (AI) are considered as a first line therapy for ER+PR+ breast cancers. However, many patients acquire resistance to AI. In this study, we determined the response of antiprogestin CDB-4124 (Proellex) on the aromatase overexpressing and Letrozole resistant cell lines and also studies its mechanism of action in inhibition of breast cancer cell proliferation. For these studies we generated aromatase overexpressing T47D (T47Darom) and respective control (T47Dcon) breast cancer cell lines by stable transfection with plasmid containing CYP19A1 gene, or empty vector respectively. Letrozole resistant cell line (T47DaromLR) was generated by incubating T47Darom for 75 weeks in the presence of 10 μM Letrozole. Cell proliferation was determined by MTT or crystal violet assays. Gene expressions were quantified by QRT-PCR whereas proteins were identified by western blot analyses, flow cytometry and immunofluorescence staining. Aromatase activity was determined by estradiol ELISA. The effects of Proellex on the anchorage independent growth were measured by soft agar colony formation. Statistical differences between the various groups were determined by Student's 't' test or ANOVA followed by Bonferroni's post hoc test. Results showed that T47Darom and T47DaromLR cell lines had significantly higher aromatase expression (mRNA; 80-90 fold and protein) and as a result exhibited increased aromatization of testosterone to estradiol as compared to T47Dcon. Both these cell lines showed enhanced growth in the presence of Testosterone (50-60%). In T47DaromLR cells increased PR-B and EGFR expression as compared to T47Dcon cells was observed. Proellex and other known aromatase inhibitors (Letrozole, Anastrozole, and Exemestane) inhibited testosterone induced cell proliferation and anchorage independent growth of T47Darom cells. Cell growth inhibition was significantly greater when cells were treated with Proellex alone or in combination with other AIs as compared to AIs alone. Proellex inhibited mRNA and protein levels of PR-B, reduced PRB/p300 complex formation in the nuclei and significantly reduced EGFR expression in T47Darom cells. Our results in the present study indicate that antiproliferative effect of Proellex is probably due to PR-B/EGFR modulation in ER+PR+, aromatase expressing cells. Overall these results suggest that antiprogestin, Proellex can be developed as a possible treatment strategy for aromatase overexpressing ER+/PR+ breast cancer patients as well as for aromatase inhibitor resistant breast cancer patients.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/pharmacology
- Aromatase/genetics
- Aromatase/metabolism
- Aromatase Inhibitors/pharmacology
- Base Sequence
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Adhesion
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Female
- Gene Expression
- Genes, erbB-1/drug effects
- Humans
- Letrozole
- Nitriles/pharmacology
- Norpregnadienes/pharmacology
- Progestins/antagonists & inhibitors
- Promegestone/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Tamoxifen/pharmacology
- Testosterone/pharmacology
- Triazoles/pharmacology
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Akash Gupta
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Scherbakov AM, Andreeva OE, Shatskaya VA, Krasil'nikov MA. The relationships between snail1 and estrogen receptor signaling in breast cancer cells. J Cell Biochem 2012; 113:2147-55. [PMID: 22307688 DOI: 10.1002/jcb.24087] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The loss of hormonal dependency of breast tumor cells is often accompanied with the appearance of epithelial-mesenchymal transition (EMT) features and increase in cell metastasis and invasiveness. The central role in the EMT belongs to transcription factors Snail responded for the decrease in E-cadherin expression and cell contacts, stimulation of cell mobility and invasiveness. Aim was to study the relationships between estrogen receptor machinery and Snail1 signaling, and mechanism of Snail1 regulation in hormone-resistant breast cancer cells. The experiments were performed on the estrogen-dependent MCF-7 breast cancer cells, estrogen-hyposensitive MCF-7/LS subline generated through long-term cultivation of the parental cells in steroid-free medium, and ER-negative estrogen-resistant HBL-100 cells. Snail1, estrogen receptor, p65 NF-κB, E-cadherin levels were analyzed by Western blot. We found that decrease in the estrogen dependency is correlated with increase in Snail1 expression and activity, we demonstrated the Snail1 involvement in the negative regulation of ER, and showed that Snail1 inhibition partially restores the sensitivity of the estrogen-hyposensitive cells to antiestrogen tamoxifen. Furthermore, NF-κB was found to serve as a positive regulator of Snail1 in breast cancer cells, and simultaneous inhibition of NF-κB and Snail1 resulted in additional increase in cell response to tamoxifen. In general, the results obtained demonstrate the phenomenon of Snail1 activation in the hormone-resistant breast cancer cells, and show that Snail1 and NF-κB may serve as an important targets in the treatment of breast cancer, both estrogen-dependent and estrogen-independent tumors.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478, Russia.
| | | | | | | |
Collapse
|
13
|
Abstract
HER2-positive tumors comprise 15% to 20% of all breast cancers (BC) and are associated with worse clinical outcomes [Slamon et al., Science 1987;235:177-82]. Trastuzumab is a humanized monoclonal antibody designed to target the extracellular domain of the HER2 receptor, and is the foundation of care of women with early and advanced HER2-positive BC. However, a significant proportion of patients with this type of BC display either primary or secondary resistance to trastuzumab. Therefore, in an effort to overcome such resistance and further improve the outcome of patients with HER2-positive disease, several new anti-HER2 agents are currently being developed. These include small molecules that inhibit the HER2 tyrosine kinase activity (lapatinib, neratinib), monoclonal antibodies directed at other epitopes of the HER2 extracellular domain (pertuzumab), antibody-drug conjugates (trastuzumab-DMl), and heat shock protein 90 inhibitors (tanespimycin). A great deal of interest has been generated by recent data from the randomized neo-adjuvant studies NeoALTTO and NeoSphere, which have shown that dual blockade of the HER2 receptor with anti-HER2 agents is significantly superior to using one agent alone. If these results are validated in larger ongoing and planned phase III studies in early BC, they could lead to a paradigm shift in treatment strategy. Therefore, to avoid unnecessary toxicities and costs, it is critical to intensify the research for biomarkers that can identify those patients most likely to benefit from specific targeted therapies.
Collapse
|