1
|
Randall J, Evans K, Watts B, Kosasih HJ, Smith CM, Earley EJ, Erickson SW, Jocoy EL, Bult CJ, Teicher BA, de Bock CE, Smith MA, Lock RB. In vivo activity of the second-generation proteasome inhibitor ixazomib against pediatric T-cell acute lymphoblastic leukemia xenografts. Exp Hematol 2024; 132:104176. [PMID: 38320689 PMCID: PMC10978271 DOI: 10.1016/j.exphem.2024.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
The overall survival rate of patients with T-cell acute lymphoblastic leukemia (T-ALL) is now 90%, although patients with relapsed T-ALL face poor prognosis. The ubiquitin-proteasome system maintains normal protein homeostasis, and aberrations in this pathway are associated with T-ALL. Here we demonstrate the in vitro and in vivo activity of ixazomib, a second-generation orally available, reversible, and selective proteasome inhibitor against pediatric T-ALL cell lines and patient-derived xenografts (PDXs) grown orthotopically in immunodeficient NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJAusb (NSG) mice. Ixazomib was highly potent in vitro, with half-maximal inhibitory concentration (IC50) values in the low nanomolar range. As a monotherapy, ixazomib significantly extended mouse event-free survival of five out of eight T-ALL PDXs in vivo.
Collapse
Affiliation(s)
- Joanna Randall
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, University of New South Wales Medicine & Health, Centre for Childhood Cancer Research, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, University of New South Wales Medicine & Health, Centre for Childhood Cancer Research, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Ben Watts
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, University of New South Wales Medicine & Health, Centre for Childhood Cancer Research, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Hansen J Kosasih
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, University of New South Wales Medicine & Health, Centre for Childhood Cancer Research, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Christopher M Smith
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, University of New South Wales Medicine & Health, Centre for Childhood Cancer Research, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Eric J Earley
- RTI International, Research Triangle Park, Research Triangle, NC
| | | | | | | | | | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, University of New South Wales Medicine & Health, Centre for Childhood Cancer Research, University of New South Wales Sydney, Sydney, NSW, Australia
| | | | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, University of New South Wales Medicine & Health, Centre for Childhood Cancer Research, University of New South Wales Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Jansen G, Al M, Assaraf YG, Kammerer S, van Meerloo J, Ossenkoppele GJ, Cloos J, Peters GJ. Statins markedly potentiate aminopeptidase inhibitor activity against (drug-resistant) human acute myeloid leukemia cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:430-446. [PMID: 37842233 PMCID: PMC10571057 DOI: 10.20517/cdr.2023.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 09/15/2023]
Abstract
Aim: This study aimed to decipher the molecular mechanism underlying the synergistic effect of inhibitors of the mevalonate-cholesterol pathway (i.e., statins) and aminopeptidase inhibitors (APis) on APi-sensitive and -resistant acute myeloid leukemia (AML) cells. Methods: U937 cells and their sublines with low and high levels of acquired resistance to (6S)-[(R)-2-((S)-Hydroxy-hydroxycarbamoyl-methoxy-methyl)-4-methyl-pentanoylamino]-3,3 dimethyl-butyric acid cyclopentyl ester (CHR2863), an APi prodrug, served as main AML cell line models. Drug combination effects were assessed with CHR2863 and in vitro non-toxic concentrations of various statins upon cell growth inhibition, cell cycle effects, and apoptosis induction. Mechanistic studies involved analysis of Rheb prenylation required for mTOR activation. Results: A strong synergy of CHR2863 with the statins simvastatin, fluvastatin, lovastatin, and pravastatin was demonstrated in U937 cells and two CHR2863-resistant sublines. This potent synergy between simvastatin and CHR2863 was also observed with a series of other human AML cell lines (e.g., THP1, MV4-11, and KG1), but not with acute lymphocytic leukemia or multiple solid tumor cell lines. This synergistic activity was: (i) specific for APis (e.g., CHR2863 and Bestatin), rather than for other cytotoxic agents; and (ii) corroborated by enhanced induction of apoptosis and cell cycle arrest which increased the sub-G1 fraction. Consistently, statin potentiation of CHR2863 activity was abrogated by co-administration of mevalonate and/or farnesyl pyrophosphate, suggesting the involvement of protein prenylation; this was experimentally confirmed by impaired Rheb prenylation by simvastatin. Conclusion: These novel findings suggest that the combined inhibitory effect of impaired Rheb prenylation and CHR2863-dependent mTOR inhibition instigates a potent synergistic inhibition of statins and APis on human AML cells.
Collapse
Affiliation(s)
- Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Marjon Al
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Yehuda G. Assaraf
- The Fred Wyszkowsky Cancer Research Laboratory, Faculty of Biology, The Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Sarah Kammerer
- Department of Medical Oncology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
| | - Johan van Meerloo
- Department of Hematology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, Amsterdam University Medical Center, location VUmc, Amsterdam 1081 HV, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-210, Poland
| |
Collapse
|
3
|
Bashiri H, Tabatabaeian H. Autophagy: A Potential Therapeutic Target to Tackle Drug Resistance in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24076019. [PMID: 37046991 PMCID: PMC10094562 DOI: 10.3390/ijms24076019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. In the past few years, the survival of MM patients has increased due to the emergence of novel drugs and combination therapies. Nevertheless, one of the significant obstacles in treating most MM patients is drug resistance, especially for individuals who have experienced relapses or developed resistance to such cutting-edge treatments. One of the critical processes in developing drug resistance in MM is autophagic activity, an intracellular self-digestive process. Several possible strategies of autophagy involvement in the induction of MM-drug resistance have been demonstrated thus far. In multiple myeloma, it has been shown that High mobility group box protein 1 (HMGB1)-dependent autophagy can contribute to drug resistance. Moreover, activation of autophagy via proteasome suppression induces drug resistance. Additionally, the effectiveness of clarithromycin as a supplemental drug in treating MM has been reported recently, in which autophagy blockage is proposed as one of the potential action mechanisms of CAM. Thus, a promising therapeutic approach that targets autophagy to trigger the death of MM cells and improve drug susceptibility could be considered. In this review, autophagy has been addressed as a survival strategy crucial for drug resistance in MM.
Collapse
Affiliation(s)
- Hamed Bashiri
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | |
Collapse
|
4
|
Salavaty A, Shehni SA, Ramialison M, Currie PD. Systematic molecular profiling of acute leukemia cancer stem cells allows identification of druggable targets. Heliyon 2022; 8:e11093. [PMID: 36281397 PMCID: PMC9586918 DOI: 10.1016/j.heliyon.2022.e11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most prevalent and acute blood cancers with a poor prognosis and low overall survival rate, especially in the elderly. Although several new AML markers and drug targets have been recently identified, the rate of long-term cancer eradication has not improved significantly due to the presence and drug resistance of AML cancer stem cells (CSCs). Here we develop a novel computational pipeline to analyze the transcriptomic profiles of AML cancer (stem) cells and identify novel candidate AML CSC markers and drug targets. In our novel pipeline we apply a top-down meta-analysis strategy to integrate The Cancer Genome Atlas data with CSC datasets to infer cell stemness features. As a result, a set of genes termed the "AML key CSC genes" along with all the available drugs/compounds that could target them were identified. Overall, our novel computational pipeline could retrieve known cancer drugs (Carfilzomib) and predicted novel drugs such as Zonisamide, Amitriptyline, and their targets amongst the top ranked drugs and drug targets for targeting AML. Additionally, the pipeline applied in this study could be used for the identification of CSC-specific markers, drivers and their respective targeting drugs in other cancer types.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia
| | - Sara Alaei Shehni
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
- Department of Pediatrics, The Royal Children's Hospital, University of Melbourne Parkville, VIC, 3052, Australia
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Di Francesco B, Verzella D, Capece D, Vecchiotti D, Di Vito Nolfi M, Flati I, Cornice J, Di Padova M, Angelucci A, Alesse E, Zazzeroni F. NF-κB: A Druggable Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:3557. [PMID: 35884618 PMCID: PMC9319319 DOI: 10.3390/cancers14143557] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy that relies on highly heterogeneous cytogenetic alterations. Although in the last few years new agents have been developed for AML treatment, the overall survival prospects for AML patients are still gloomy and new therapeutic options are still urgently needed. Constitutive NF-κB activation has been reported in around 40% of AML patients, where it sustains AML cell survival and chemoresistance. Given the central role of NF-κB in AML, targeting the NF-κB pathway represents an attractive strategy to treat AML. This review focuses on current knowledge of NF-κB's roles in AML pathogenesis and summarizes the main therapeutic approaches used to treat NF-κB-driven AML.
Collapse
|
6
|
Tardif M, Souza A, Krajinovic M, Bittencourt H, Tran TH. Molecular-based and antibody-based targeted pharmacological approaches in childhood acute lymphoblastic leukemia. Expert Opin Pharmacother 2021; 22:1871-1887. [PMID: 34011251 DOI: 10.1080/14656566.2021.1931683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Despite the significant survival improvement in childhood acutelymphoblastic leukemia (ALL), 15-20% of patients continue to relapse; outcomes following relapse remain suboptimal and have room for further improvement. Advances in genomics have shed new insights on the biology of ALL, led to the discovery of novel genomically defined ALL subtypes, refined prognostic significance and revealed new therapeutic vulnerabilities.Areas covered: In this review, the authors provide an overview of the genomic landscape of childhood ALL and highlight recent advances in molecular-based and antibody-based pharmacological approaches in the treatment of childhood ALL, from emerging preclinical evidence to published results of completed clinical trials.Expert opinion: Molecularly targeted therapies and immunotherapies have expanded the horizons of ALL therapy and represent promising therapeutic avenues for high-risk and relapsed/refractory ALL. These novel therapies are now moving into frontline ALL therapy and may define new treatment paradigms that aim to further improve survival and reduce chemotherapy-related toxicities in the management of pediatric ALL.
Collapse
Affiliation(s)
- Magalie Tardif
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Centre, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Amalia Souza
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Centre, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Maja Krajinovic
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Centre, CHU Sainte-Justine, Montréal, Québec, Canada.,Department of Medicine, Université De Montréal, Montréal, Québec, Canada
| | - Henrique Bittencourt
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Centre, CHU Sainte-Justine, Montréal, Québec, Canada.,Department of Medicine, Université De Montréal, Montréal, Québec, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Centre, CHU Sainte-Justine, Montréal, Québec, Canada.,Department of Medicine, Université De Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Dai W, Xie S, Chen C, Choi BH. Ras sumoylation in cell signaling and transformation. Semin Cancer Biol 2021; 76:301-309. [PMID: 33812985 DOI: 10.1016/j.semcancer.2021.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/13/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Ras proteins are small GTPases that participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, and differentiation. Mutations or deregulated activities of Ras are frequently the driving force for oncogenic transformation and tumorigenesis. Posttranslational modifications play a crucial role in mediating the stability, activity, or subcellular localization/trafficking of numerous cellular regulators including Ras proteins. A series of recent studies reveal that Ras proteins are also regulated by sumoylation. All three Ras protein isoforms (HRas, KRas, and NRas) are modified by SUMO3. The conserved lysine42 appears to be the primary site for mediating sumoylation. Expression of KRasV12/R42 mutants compromised the activation of the Raf/MEK/ERK signaling axis, leading to a reduced rate of cell migration and invasion in vitro in multiple cell lines. Moreover, treatment of transformed pancreatic cells with a SUMO E2 inhibitor blocks cell migration in a concentration-dependent manner, which is associated with a reduced level of both KRas sumoylation and expression of mesenchymal cell markers. Furthermore, mouse xenograft experiments reveal that expression of a SUMO-resistant mutant appears to suppress tumor development in vivo. Combined, these studies indicate that sumoylation functions as an important mechanism in mediating the roles of Ras in cell proliferation, differentiation, and malignant transformation and that the SUMO-modification system of Ras oncoproteins can be explored as a new druggable target for various human malignancies.
Collapse
Affiliation(s)
- Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, USA
| | - Suqing Xie
- Institute of Pathology, Kings County Hospital Center, Brooklyn, NY, USA
| | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Byeong Hyeok Choi
- Department of Environmental Medicine, New York University Langone Medical Center, USA.
| |
Collapse
|
8
|
Roeten MS, van Meerloo J, Kwidama ZJ, ter Huizen G, Segerink WH, Zweegman S, Kaspers GJ, Jansen G, Cloos J. Pre-Clinical Evaluation of the Proteasome Inhibitor Ixazomib against Bortezomib-Resistant Leukemia Cells and Primary Acute Leukemia Cells. Cells 2021; 10:665. [PMID: 33802801 PMCID: PMC8002577 DOI: 10.3390/cells10030665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
At present, 20-30% of children with acute leukemia still relapse from current chemotherapy protocols, underscoring the unmet need for new treatment options, such as proteasome inhibition. Ixazomib (IXA) is an orally available proteasome inhibitor, with an improved safety profile compared to Bortezomib (BTZ). The mechanism of action (proteasome subunit inhibition, apoptosis induction) and growth inhibitory potential of IXA vs. BTZ were tested in vitro in human (BTZ-resistant) leukemia cell lines. Ex vivo activity of IXA vs. BTZ was analyzed in 15 acute lymphoblastic leukemia (ALL) and 9 acute myeloid leukemia (AML) primary pediatric patient samples. BTZ demonstrated more potent inhibitory effects on constitutive β5 and immunoproteasome β5i proteasome subunit activity; however, IXA more potently inhibited β1i subunit than BTZ (70% vs. 29% at 2.5 nM). In ALL/AML cell lines, IXA conveyed 50% growth inhibition at low nanomolar concentrations, but was ~10-fold less potent than BTZ. BTZ-resistant cells (150-160 fold) displayed similar (100-fold) cross-resistance to IXA. Finally, IXA and BTZ exhibited anti-leukemic effects for primary ex vivo ALL and AML cells; mean LC50 (nM) for IXA: 24 ± 11 and 30 ± 8, respectively, and mean LC50 for BTZ: 4.5 ± 1 and 11 ± 4, respectively. IXA has overlapping mechanisms of action with BTZ and showed anti-leukemic activity in primary leukemic cells, encouraging further pre-clinical in vivo evaluation.
Collapse
Affiliation(s)
- Margot S.F. Roeten
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Johan van Meerloo
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Zinia J. Kwidama
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Giovanna ter Huizen
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Wouter H. Segerink
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Sonja Zweegman
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Gertjan J.L. Kaspers
- Princess Maxima Center of Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1105 AZ Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;
| | - Jacqueline Cloos
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| |
Collapse
|
9
|
Tran TH, Hunger SP. The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities. Semin Cancer Biol 2020; 84:144-152. [PMID: 33197607 DOI: 10.1016/j.semcancer.2020.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and constitutes approximately 25 % of cancer diagnoses among children under the age of 15 (Howlader et al., 2013) [1]. Overall, about half of ALL cases occur in children and adolescents and it is the most common acute leukemia until the early 20s, after which acute myeloid leukemia predominates. ALL is the most successful treatment paradigm in pediatric cancer medicine as illustrated by the significant survival rate improvement from ∼10 % in the 1960s to >90 % today (Hunger et al., 2015) [2]. This remarkable success stems from the progressive improvement in the efficacy of risk-adapted multiagent chemotherapy regimens with effective central nervous system (CNS) prophylaxis via well-designed randomized clinical trials conducted by international collaborative consortia, enhanced supportive care measures to decrease treatment-related mortality, in-depth understanding of the genetic basis of ALL, and refinement in treatment response assessment through serial minimal residual disease (MRD) monitoring (Pui et al., 2015) [3]. These advances collectively contribute to a decline in mortality rate of 23.5% for children diagnosed with ALL in the US from 2000 to 2010 (Smith et al., 2014) [4]. Nevertheless, outcomes of older adolescents and young adults with ALL still lag behind those of their younger counterparts despite pediatric-inspired chemotherapy regimens (Stock et al., 2019) [5], relapsed/refractory childhood ALL is associated with poor outcomes (Rheingold et al., 2019) [6], and ALL still represents the leading causes of cancer-related deaths (Smith et al., 2010) [7]. The last two decades have witnessed important genomic discoveries in ALL, enabled by advances in next-generation sequencing (NGS) technologies to characterize the landscape of germline and somatic alterations in ALL, some of which have important diagnostic, prognostic and therapeutic implications. Comprehensive genomic analysis of large cohorts of children and adults with ALL has revised the taxonomy of ALL in the molecular era by identifying novel clonal, subtype-defined chromosomal alterations associated with distinct gene expression signatures, thus reducing the proportion of patients previously labelled as "Others" from 25 % to approximately 5 % (Mullighan et al., 2019) [8]. Insights into the genomics of ALL further provide compelling biologic rationale to expand the scope of precision medicine therapies for childhood ALL. Herein, we summarize a decade of genomic discoveries to highlight three different facets of precision medicine in pediatric ALL: 1) inherited predispositions of ALL; 2) relevant molecularly targeted therapies in genomically-defined ALL subtypes; and 3) treatment response monitoring via pharmacogenomics and novel MRD biomarkers.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Stephen P Hunger
- Department of Pediatrics, The Center for Childhood Cancer Research, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Yu H, Yin Y, Yi Y, Cheng Z, Kuang W, Li R, Zhong H, Cui Y, Yuan L, Gong F, Wang Z, Li H, Peng H, Zhang G. Targeting lactate dehydrogenase A (LDHA) exerts antileukemic effects on T-cell acute lymphoblastic leukemia. Cancer Commun (Lond) 2020; 40:501-517. [PMID: 32820611 PMCID: PMC7571401 DOI: 10.1002/cac2.12080] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background T‐cell acute lymphoblastic leukemia (T‐ALL) is an uncommon and aggressive subtype of acute lymphoblastic leukemia (ALL). In the serum of T‐ALL patients, the activity of lactate dehydrogenase A (LDHA) is increased. We proposed that targeting LDHA may be a potential strategy to improve T‐ALL outcomes. The current study was conducted to investigate the antileukemic effect of LDHA gene‐targeting treatment on T‐ALL and the underlying molecular mechanism. Methods Primary T‐ALL cell lines Jurkat and DU528 were treated with the LDH inhibitor oxamate. MTT, colony formation, apoptosis, and cell cycle assays were performed to investigate the effects of oxamate on T‐ALL cells. Quantitative real‐time PCR (qPCR) and Western blotting analyses were applied to determine the related signaling pathways. A mitochondrial reactive oxygen species (ROS) assay was performed to evaluate ROS production after T‐ALL cells were treated with oxamate. A T‐ALL transgenic zebrafish model with LDHA gene knockdown was established using CRISPR/Cas9 gene‐editing technology, and then TUNEL, Western blotting, and T‐ALL tumor progression analyses were conducted to investigate the effects of LDHA gene knockdown on T‐ALL transgenic zebrafish. Results Oxamate significantly inhibited proliferation and induced apoptosis of Jurkat and DU528 cells. It also arrested Jurkat and DU528 cells in G0/G1 phase and stimulated ROS production (all P < 0.001). Blocking LDHA significantly decreased the gene and protein expression of c‐Myc, as well as the levels of phosphorylated serine/threonine kinase (AKT) and glycogen synthase kinase 3 beta (GSK‐3β) in the phosphatidylinositol 3′‐kinase (PI3K) signaling pathway. LDHA gene knockdown delayed disease progression and down‐regulated c‐Myc mRNA and protein expression in T‐ALL transgenic zebrafish. Conclusion Targeting LDHA exerted an antileukemic effect on T‐ALL, representing a potential strategy for T‐ALL treatment.
Collapse
Affiliation(s)
- Haizhi Yu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Department of Respiratory and Critical Medicine, NHC Key Laboratory of Pulmonary Immune-related Diseases, People's Hospital of Guizhou University, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, P. R. China
| | - Yafei Yin
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Department of Hematology, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, P. R. China
| | - Yifang Yi
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Department of Hematology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, P. R. China
| | - Zhao Cheng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Wenyong Kuang
- Department of Hematology, Hunan Children's Hospital, Changsha, Hunan, 410005, P. R. China
| | - Ruijuan Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Haiying Zhong
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Yajuan Cui
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Lingli Yuan
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Fanjie Gong
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Zhihua Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Heng Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan, 410011, P. R. China
| | - Guangsen Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China.,Institute of Hematology, Central South University, Changsha, Hunan, 410011, P. R. China
| |
Collapse
|
11
|
The Ubiquitin Proteasome System in Hematological Malignancies: New Insight into Its Functional Role and Therapeutic Options. Cancers (Basel) 2020; 12:cancers12071898. [PMID: 32674429 PMCID: PMC7409207 DOI: 10.3390/cancers12071898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is the main cellular degradation machinery designed for controlling turnover of critical proteins involved in cancer pathogenesis, including hematological malignancies. UPS plays a functional role in regulating turnover of key proteins involved in cell cycle arrest, apoptosis and terminal differentiation. When deregulated, it leads to several disorders, including cancer. Several studies indicate that, in some subtypes of human hematological neoplasms such as multiple myeloma and Burkitt’s lymphoma, abnormalities in the UPS made it an attractive therapeutic target due to pro-cancer activity. In this review, we discuss the aberrant role of UPS evaluating its impact in hematological malignancies. Finally, we also review the most promising therapeutic approaches to target UPS as powerful strategies to improve treatment of blood cancers.
Collapse
|
12
|
Tian W, Trader DJ. Discovery of a Small Molecule Probe of Rpn-6, an Essential Subunit of the 26S Proteasome. ACS Chem Biol 2020; 15:554-561. [PMID: 31877015 DOI: 10.1021/acschembio.9b01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A considerable number of essential cellular proteins have no catalytic activity and serve instead as structural components to aid in assembling protein complexes. For example, the assembly and function of the 26S proteasome, the major enzymatic complex necessary for ubiquitin-dependent protein degradation, require a number of essential protein contacts to associate the 19S regulatory particle with the 20S core particle. Previously, small molecule inhibitors of the active sites of the 20S core particle have been developed, but the activity of the 26S proteasome could also be altered via the disruption of its assembly. We were interested in discovering a small molecule binder of Rpn-6, as it is among several essential proteins that facilitate 26S assembly, which could be used to further our understanding of the association of the 19S regulatory particle with the 20S core particle. Additionally, we were interested in whether a small molecule-Rpn-6 interaction could potentially be cytotoxic to cancer cells that rely heavily on proteasome activity for survival. A workflow for utilizing a one-bead, one-compound library and a thermal shift assay was developed to discover such a molecule. TXS-8, our lead hit, was discovered to have a low micromolar binding affinity for Rpn-6 as well as very limited binding to other proteins. The cytotoxicity of TXS-8 was evaluated in several cell lines, revealing increased cytotoxicity to hematological cancers. Discovery of this peptoid binder of Rpn-6 provides the initial evidence that Rpn-6 could be a druggable target to affect protein degradation and serves as a primary scaffold from which to design more potent binders. We suspect that Rpn-6 could have additional essential roles beyond that of a molecular clamp of the proteasome to help hematological cancer cells survive and that TXS-8 can serve as a useful tool for further elucidating its roles.
Collapse
Affiliation(s)
- Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Hefazi M, Litzow MR. Recent Advances in the Biology and Treatment of T Cell Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 2018; 13:265-274. [PMID: 29948644 DOI: 10.1007/s11899-018-0455-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW This article provides an overview of the current knowledge regarding the biology and treatment of T cell acute lymphoblastic leukemia (T-ALL) and highlights the most recent findings in this field over the past 5 years. RECENT FINDINGS Remarkable progress has been made in the genomic landscape of T-ALL over the past few years. The discovery of activating mutations of NOTCH1 and FBXW7 in a majority of patients has been a seminal observation, with several early phase clinical trials currently exploring these as potential therapeutic targets. Characterization of early T cell precursor ALL, incorporation of minimal residual disease assessment into therapeutic protocols, and use of pediatric-intensive regimens along with judicious use of allogeneic HCT have significantly improved risk stratification and treatment outcomes. Improved risk stratification and the use of novel targeted therapies based on recent genomic discoveries are expected to change the therapeutic landscape of T-ALL and hopefully improve the outcomes of this historically poor prognosis disease.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Choi BH, Philips MR, Chen Y, Lu L, Dai W. K-Ras Lys-42 is crucial for its signaling, cell migration, and invasion. J Biol Chem 2018; 293:17574-17581. [PMID: 30228186 PMCID: PMC6231119 DOI: 10.1074/jbc.ra118.003723] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Ras proteins participate in multiple signal cascades, regulating crucial cellular processes, including cell survival, proliferation, and differentiation. We have previously reported that Ras proteins are modified by sumoylation and that Lys-42 plays an important role in mediating the modification. In the current study, we further investigated the role of Lys-42 in regulating cellular activities of K-Ras. Inducible expression of K-RasV12 led to the activation of downstream components, including c-RAF, MEK1, and extracellular signal-regulated kinases (ERKs), whereas expression of K-RasV12/R42 mutant compromised the activation of the RAF/MEK/ERK signaling axis. Expression of K-RasV12/R42 also led to reduced phosphorylation of several other protein kinases, including c-Jun N-terminal kinase (JNK), Chk2, and focal adhesion kinase (FAK). Significantly, K-RasV12/R42 expression inhibited cellular migration and invasion in vitro in multiple cell lines, including transformed pancreatic cells. Given that K-Ras plays a crucial role in mediating oncogenesis in the pancreas, we treated transformed pancreatic cells of both BxPC-3 and MiaPaCa-2 with 2-D08, a small ubiquitin-like modifier (SUMO) E2 inhibitor. Treatment with the compound inhibited cell migration in a concentration-dependent manner, which was correlated with a reduced level of K-Ras sumoylation. Moreover, 2-D08 suppressed expression of ZEB1 (a mesenchymal cell marker) with concomitant induction of ZO-1 (an epithelial cell marker). Combined, our studies strongly suggest that posttranslational modification(s), including sumoylation mediated by Lys-42, plays a crucial role in K-Ras activities in vivo.
Collapse
Affiliation(s)
| | - Mark R Philips
- Department of Medicine, New York University Langone Medical Center, Tuxedo Park, New York 10987
| | - Yuan Chen
- City of Hope, Duarte, California 91010, and
| | - Lou Lu
- Department of Biochemistry and Molecular Pharmacology, and
| | - Wei Dai
- From the Department of Environmental Medicine .,the Department of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California 90509
| |
Collapse
|
15
|
Oerlemans R, Berkers CR, Assaraf YG, Scheffer GL, Peters GJ, Verbrugge SE, Cloos J, Slootstra J, Meloen RH, Shoemaker RH, Dijkmans BAC, Scheper RJ, Ovaa H, Jansen G. Proteasome inhibition and mechanism of resistance to a synthetic, library-based hexapeptide. Invest New Drugs 2018; 36:797-809. [PMID: 29442210 PMCID: PMC6153520 DOI: 10.1007/s10637-018-0569-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Background The hexapeptide 4A6 (Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-Glu(OtBu)-Gly-Bza) was isolated from a peptide library constructed to identify peptide-based transport inhibitors of multidrug resistance (MDR) efflux pumps including P-glycoprotein and Multidrug Resistance-associated Protein 1. 4A6 proved to be a substrate but not an inhibitor of these MDR efflux transporters. In fact, 4A6 and related peptides displayed potent cytotoxic activity via an unknown mechanism. Objective To decipher the mode of cytotoxic activity of 4A6. Methods Screening of 4A6 activity was performed against the NCI60 panel of cancer cell lines. Possible interactions of 4A6 with the 26S proteasome were assessed via proteasome activity and affinity labeling, and cell growth inhibition studies with leukemic cells resistant to the proteasome inhibitor bortezomib (BTZ). Results The NCI60 panel COMPARE analysis revealed that 4A6 had an activity profile overlapping with BTZ. Consistently, 4A6 proved to be a selective and reversible inhibitor of β5 subunit (PSMB5)-associated chymotrypsin-like activity of the 26S proteasome. This conclusion is supported by several lines of evidence: (i) inhibition of chymotrypsin-like proteasome activity by 4A6 and related peptides correlated with their cell growth inhibition potencies; (ii) 4A6 reversibly inhibited functional β5 active site labeling with the affinity probe BodipyFL-Ahx3L3VS; and (iii) human myeloid THP1 cells with acquired BTZ resistance due to mutated PSMB5 were highly (up to 287-fold) cross-resistant to 4A6 and its related peptides. Conclusion 4A6 is a novel specific inhibitor of the β5 subunit-associated chymotrypsin-like proteasome activity. Further exploration of 4A6 as a lead compound for development as a novel proteasome-targeted drug is warranted.
Collapse
Affiliation(s)
- Ruud Oerlemans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - George L Scheffer
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sue Ellen Verbrugge
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ben A C Dijkmans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Rik J Scheper
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit Jansen
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Miyamoto K, Saito K. Concise machinery for monitoring ubiquitination activities using novel artificial RING fingers. Protein Sci 2018; 27:1354-1363. [PMID: 29663561 DOI: 10.1002/pro.3427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/20/2023]
Abstract
Protein ubiquitination is involved in many cellular processes, such as protein degradation, DNA repair, and signal transduction pathways. Ubiquitin-conjugating (E2) enzymes of the ubiquitination pathway are associated with various cancers, such as leukemia, lung cancer, and gastric cancer. However, to date, detection of E2 activities is not practicable for capturing the pathological conditions of cancers due to complications related to the enzymatic cascade reaction. To overcome this hurdle, we have recently investigated a novel strategy for measuring E2 activities. Artificial RING fingers (ARFs) were developed to conveniently detect E2 activities during the ubiquitination reaction. ARFs were created by grafting the active sites of ubiquitin-ligating (E3) enzymes onto amino acid sequences with 38 residues. The grafting design downsized E3s to small molecules (ARFs). Such an ARF is a multifunctional molecule that possesses specific E2-binding capabilities and ubiquitinates itself without a substrate. In this review, we discuss the major findings from recent investigations on a new molecular design for ARFs and their simplified detection system for E2 activities. The use of the ARF allowed us to monitor E2 activities using acute promyelocytic leukemia (APL)-derived cells following treatment with the anticancer drug bortezomib. The molecular design of ARFs is extremely simple and convenient, and thus, may be a powerful tool for protein engineering. The ARF methodology may reveal a new screening method of E2s that will contribute to diagnostic techniques for cancers.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
17
|
Panagopoulos I, Gorunova L, Andersen HK, Bergrem A, Dahm A, Andersen K, Micci F, Heim S. PAN3- PSMA2 fusion resulting from a novel t(7;13)(p14;q12) chromosome translocation in a myelodysplastic syndrome that evolved into acute myeloid leukemia. Exp Hematol Oncol 2018; 7:7. [PMID: 29560286 PMCID: PMC5859504 DOI: 10.1186/s40164-018-0099-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Acquired primary chromosomal changes in cancer are sometimes found as sole karyotypic abnormalities. They are specifically associated with particular types of neoplasia, essential in establishing the neoplasm, and they often lead to the generation of chimeric genes of pathogenetic, diagnostic, and prognostic importance. Thus, the report of new primary cancer-specific chromosomal aberrations is not only of scientific but also potentially of clinical interest, as is the detection of their gene-level consequences. Case presentation RNA-sequencing was performed on a bone marrow sample from a patient with myelodysplastic syndrome (MDS). The karyotype was 46,XX,t(7;13)(p14;q12)[2]/46,XX[23]. The MDS later evolved into acute myeloid leukemia (AML) at which point the bone marrow cells also contained additional, secondary aberrations. The 7;13-translocation resulted in fusion of the gene PAN3 from 13q12 with PSMA2 from 7p14 to generate an out-of-frame PAN3–PSMA2 fusion transcript whose presence was verified by RT-PCR together with Sanger sequencing. Interphase fluorescence in situ hybridization analysis confirmed the existence of the chimeric gene. Conclusions The novel t(7;13)(p14;q12)/PAN3–PSMA2 in the neoplastic bone marrow cells could affect two key protein complex: (a) the PAN2/PAN3 complex (PAN3 rearrangement) which is responsible for deadenylation, the process of removing the poly(A) tail from RNA, and (b) the proteasome (PSMA2 rearrangement) which is responsible for degradation of intracellular proteins. The patient showed a favorable response to decitabine after treatment with 5-azacitidine and conventional intensive chemotherapy had failed. Whether this might represent a consistent feature of MDS/AML with this particular gene fusion, remains unknown.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Ludmila Gorunova
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Hege Kilen Andersen
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Astrid Bergrem
- 2Department of Haematology, Akershus University Hospital, Nordbyhagen, Norway
| | - Anders Dahm
- 2Department of Haematology, Akershus University Hospital, Nordbyhagen, Norway.,3Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristin Andersen
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Francesca Micci
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Sverre Heim
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway.,3Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Franke NE, Kaspers GL, Assaraf YG, van Meerloo J, Niewerth D, Kessler FL, Poddighe PJ, Kole J, Smeets SJ, Ylstra B, Bi C, Chng WJ, Horton TM, Menezes RX, Musters RJP, Zweegman S, Jansen G, Cloos J. Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget 2018; 7:74779-74796. [PMID: 27542283 PMCID: PMC5342701 DOI: 10.18632/oncotarget.11340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress.
Collapse
Affiliation(s)
- Niels E Franke
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan L Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Johan van Meerloo
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Denise Niewerth
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Floortje L Kessler
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Pino J Poddighe
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen Kole
- Department of Physiology, VU University, Amsterdam, The Netherlands
| | - Serge J Smeets
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Chonglei Bi
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Current address: BGI-Shenzhen, Shenzhen, China
| | - Wee Joo Chng
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Terzah M Horton
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rene X Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Miyamoto K, Sumida M, Yuasa-Sunagawa M, Saito K. Highly sensitive detection of E2 activity in ubiquitination using an artificial RING finger. J Pept Sci 2017; 23:222-227. [PMID: 28093826 DOI: 10.1002/psc.2972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022]
Abstract
The ubiquitin-conjugating (E2) enzymes of protein ubiquitination are associated with various diseases such as leukemia, lung cancer, and breast cancer. Rapid and accurate detection of E2 enzymatic activities remains poor. Here, we described the detection of E2 activity on a signal accumulation ISFET biosensor (AMIS sensor) using an artificial RING finger (ARF). The use of ARF enables the simplified detection of E2 activity without a substrate. The high-sensitivity quantitative detection of E2 activities was demonstrated via real-time monitoring over a response range of femtomolar to micromolar concentrations. Furthermore, the monitoring of E2 activities was successfully achieved using human acute promyelocytic leukemia cells following treatment with the anticancer drug bortezomib, which allowed the assessment of the pathological conditions. This strategy is extremely simple and convenient, and the present detection could be widely applied to specific E2s for various types of cancers. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Miho Sumida
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Mayumi Yuasa-Sunagawa
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
20
|
Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:580-588. [PMID: 27913532 PMCID: PMC6142501 DOI: 10.1182/asheducation-2016.1.580] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is biologically distinct from its B lymphoblastic (B-ALL) counterpart and shows different kinetic patterns of disease response. Although very similar regimens are used to treat T-ALL and B-ALL, distinctions in response to different elements of therapy have been observed. Similar to B-ALL, the key prognostic determinant in T-ALL is minimal residual disease (MRD) response. Unlike B-ALL, other factors including age, white blood cell count at diagnosis, and genetics of the ALL blasts are not independently prognostic when MRD response is included. Recent insights into T-ALL biology, using modern genomic techniques, have identified a number of recurrent lesions that can be grouped into several targetable pathways, including Notch, Jak/Stat, PI3K/Akt/mTOR, and MAPK. With contemporary chemotherapy, outcomes for de novo T-ALL have steadily improved and now approach those observed in B-ALL, with approximately 85% 5-year event-free survival. Unfortunately, salvage has remained poor, with less than 25% event-free and overall survival rates for relapsed disease. Thus, current efforts are focused on preventing relapse by augmenting therapy for high-risk patients, sparing toxicity in favorable subsets and developing new approaches for the treatment of recurrent disease.
Collapse
Affiliation(s)
- Elizabeth A. Raetz
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - David T. Teachey
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
21
|
Affiliation(s)
- Bruce Bostrom
- Cancer and Blood Disorders Program, Children’s Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Combination Treatment with Sublethal Ionizing Radiation and the Proteasome Inhibitor, Bortezomib, Enhances Death-Receptor Mediated Apoptosis and Anti-Tumor Immune Attack. Int J Mol Sci 2015; 16:30405-21. [PMID: 26703577 PMCID: PMC4691179 DOI: 10.3390/ijms161226238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023] Open
Abstract
Sub-lethal doses of radiation can modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. Proteasome inhibitors demonstrate broad anti-tumor activity in clinical and pre-clinical cancer models. Here, we use a combination treatment of proteasome inhibition and irradiation to further induce immunomodulation of tumor cells that could enhance tumor-specific immune responses. We investigate the effects of the 26S proteasome inhibitor, bortezomib, alone or in combination with radiotherapy, on the expression of immunogenic genes in normal colon and colorectal cancer cell lines. We examined cells for changes in the expression of several death receptors (DR4, DR5 and Fas) commonly used by T cells for killing of target cells. Our results indicate that the combination treatment resulted in increased cell surface expression of death receptors by increasing their transcript levels. The combination treatment further increases the sensitivity of carcinoma cells to apoptosis through FAS and TRAIL receptors but does not change the sensitivity of normal non-malignant epithelial cells. Furthermore, the combination treatment significantly enhances tumor cell killing by tumor specific CD8+ T cells. This study suggests that combining radiotherapy and proteasome inhibition may simultaneously enhance tumor immunogenicity and the induction of antitumor immunity by enhancing tumor-specific T-cell activity.
Collapse
|
23
|
Natural compounds for pediatric cancer treatment. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:131-49. [DOI: 10.1007/s00210-015-1191-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022]
|
24
|
Wartman LD, Fiala MA, Fletcher T, Hawkins ER, Cashen A, DiPersio JF, Jacoby MA, Stockerl-Goldstein KE, Pusic I, Uy GL, Westervelt P, Vij R. A phase I study of carfilzomib for relapsed or refractory acute myeloid and acute lymphoblastic leukemia. Leuk Lymphoma 2015; 57:728-30. [PMID: 26674111 DOI: 10.3109/10428194.2015.1076930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lukas D Wartman
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Mark A Fiala
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Theresa Fletcher
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Emily R Hawkins
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Amanda Cashen
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - John F DiPersio
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Meagan A Jacoby
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Keith E Stockerl-Goldstein
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Iskra Pusic
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Geoffrey L Uy
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Peter Westervelt
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Ravi Vij
- a Division of Oncology, Department of Medicine , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
25
|
Cierpicki T, Grembecka J. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Immunol Rev 2015; 263:279-301. [PMID: 25510283 DOI: 10.1111/imr.12244] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past several years, there has been an increasing research effort focused on inhibition of protein-protein interactions (PPIs) to develop novel therapeutic approaches for cancer, including hematologic malignancies. These efforts have led to development of small molecule inhibitors of PPIs, some of which already advanced to the stage of clinical trials while others are at different stages of preclinical optimization, emphasizing PPIs as an emerging and attractive class of drug targets. Here, we review several examples of recently developed inhibitors of PPIs highly relevant to hematologic cancers. We address the existing skepticism about feasibility of targeting PPIs and emphasize potential therapeutic benefit from blocking PPIs in hematologic malignancies. We then use these examples to discuss the approaches for successful identification of PPI inhibitors and provide analysis of the protein-protein interfaces, with the goal to address 'druggability' of new PPIs relevant to hematology. We discuss lessons learned to improve the success of targeting new PPIs and evaluate prospects and limits of the research in this field. We conclude that not all PPIs are equally tractable for blocking by small molecules, and detailed analysis of PPI interfaces is critical for selection of those with the highest chance of success. Together, our analysis uncovers patterns that should help to advance drug discovery in hematologic malignancies by successful targeting of new PPIs.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
26
|
Jelinek T, Kryukov F, Rihova L, Hajek R. Plasma cell leukemia: from biology to treatment. Eur J Haematol 2015; 95:16-26. [DOI: 10.1111/ejh.12533] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Tomas Jelinek
- University Hospital Ostrava; Department of Haematooncology; Ostrava Czech Republic
| | - Fedor Kryukov
- University of Ostrava; Faculty of Medicine; Ostrava Czech Republic
| | - Lucie Rihova
- University Hospital Brno; Department of Clinical Haematology; Brno Czech Republic
| | - Roman Hajek
- University Hospital Ostrava; Department of Haematooncology; Ostrava Czech Republic
- University of Ostrava; Faculty of Medicine; Ostrava Czech Republic
- University Hospital Brno; Department of Clinical Haematology; Brno Czech Republic
| |
Collapse
|
27
|
Niewerth D, Jansen G, Assaraf YG, Zweegman S, Kaspers GJ, Cloos J. Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist Updat 2015; 18:18-35. [DOI: 10.1016/j.drup.2014.12.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022]
|
28
|
Fontanari Krause LM, Japp AS, Krause A, Mooster J, Chopra M, Müschen M, Bohlander SK. Identification and characterization of OSTL (RNF217) encoding a RING-IBR-RING protein adjacent to a translocation breakpoint involving ETV6 in childhood ALL. Sci Rep 2014; 4:6565. [PMID: 25298122 PMCID: PMC4190505 DOI: 10.1038/srep06565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/15/2014] [Indexed: 12/30/2022] Open
Abstract
Genomic aberrations involving ETV6 on band 12p13 are amongst the most common chromosomal abnormalities in human leukemia. The translocation t(6;12)(q23;13) in a childhood B-cell acute lymphoblastic leukemia (ALL) cell line fuses ETV6 with the putative long non-coding RNA gene STL. Linking STL properties to leukemia has so far been difficult. Here, we describe a novel gene, OSTL (annotated as RNF217 in Genbank), which shares the first exon and a CpG island with STL but is transcribed in the opposite direction. Human RNF217 codes for a highly conserved RING finger protein and is mainly expressed in testis and skeletal muscle with different splice variants. RNF217 shows regulated splicing in B cell development, and is expressed in a number of human B cell leukemia cell lines, primary human chronic myeloid leukemia, acute myeloid leukemia with normal karyotype and acute T-ALL samples. Using a yeast two-hybrid screen, we identified the anti-apoptotic protein HAX1 to interact with RNF217. This interaction could be mapped to the C-terminal RING finger motif of RNF217. We propose that some of the recurring aberrations involving 6q might deregulate the expression of RNF217 and result in imbalanced apoptosis signalling via HAX1, promoting leukemia development.
Collapse
Affiliation(s)
- Luciana M. Fontanari Krause
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig Maximilians-Universität, Munich (LMU), Germany
| | - Anna Sophia Japp
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig Maximilians-Universität, Munich (LMU), Germany
| | - Alexandre Krause
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig Maximilians-Universität, Munich (LMU), Germany
| | - Jana Mooster
- Laboratory for Molecular Stem Cell Biology, Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Martin Chopra
- Faculty of Medical and Health Sciences, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Stefan K. Bohlander
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig Maximilians-Universität, Munich (LMU), Germany
- Faculty of Medical and Health Sciences, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Niewerth D, Jansen G, Riethoff LFV, van Meerloo J, Kale AJ, Moore BS, Assaraf YG, Anderl JL, Zweegman S, Kaspers GJL, Cloos J. Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor salinosporamide A (Marizomib). Mol Pharmacol 2014; 86:12-9. [PMID: 24737138 PMCID: PMC4054006 DOI: 10.1124/mol.114.092114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/14/2014] [Indexed: 12/19/2022] Open
Abstract
Salinosporamide A (NPI-0052, marizomib) is a naturally occurring proteasome inhibitor derived from the marine actinobacterium Salinispora tropica, and represents a promising clinical agent in the treatment of hematologic malignancies. Recently, these actinobacteria were shown to harbor self-resistance properties to salinosporamide A by expressing redundant catalytically active mutants of the 20S proteasome β-subunit, reminiscent of PSMB5 mutations identified in cancer cells with acquired resistance to the founding proteasome inhibitor bortezomib (BTZ). Here, we assessed the growth inhibitory potential of salinosporamide A in human acute lymphocytic leukemia CCRF-CEM cells, and its 10-fold (CEM/BTZ7) and 123-fold (CEM/BTZ200) bortezomib-resistant sublines harboring PSMB5 mutations. Parental cells displayed sensitivity to salinosporamide A (IC50 = 5.1 nM), whereas their bortezomib-resistant sublines were 9- and 17-fold cross-resistant to salinosporamide A, respectively. Notably, combination experiments of salinosporamide A and bortezomib showed synergistic activity in CEM/BTZ200 cells. CEM cells gradually exposed to 20 nM salinosporamide A (CEM/S20) displayed stable 5-fold acquired resistance to salinosporamide A and were 3-fold cross-resistant to bortezomib. Consistent with the acquisition of a PSMB5 point mutation (M45V) in CEM/S20 cells, salinosporamide A displayed a markedly impaired capacity to inhibit β5-associated catalytic activity. Last, compared with parental CEM cells, CEM/S20 cells exhibited up to 2.5-fold upregulation of constitutive proteasome subunits, while retaining unaltered immunoproteasome subunit expression. In conclusion, salinosporamide A displayed potent antileukemic activity against bortezomib-resistant leukemia cells. β-Subunit point mutations as a common feature of acquired resistance to salinosporamide A and bortezomib in hematologic cells and S. tropica suggest an evolutionarily conserved mechanism of resistance to proteasome inhibitors.
Collapse
Affiliation(s)
- Denise Niewerth
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Gerrit Jansen
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Lesley F V Riethoff
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Johan van Meerloo
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Andrew J Kale
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Bradley S Moore
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Yehuda G Assaraf
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Janet L Anderl
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Sonja Zweegman
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology (D.N., L.F.V.R., J.v.M., G.J.L.K., J.C.), Department of Rheumatology (G.J.), and Department of Hematology (J.v.M., S.Z., J.C.), VU University Medical Center, Amsterdam, The Netherlands; Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California (A.J.K., B.S.M.); The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel (Y.G.A.); and Research Department, Onyx Pharmaceuticals Inc., South San Francisco, California (J.L.A.)
| |
Collapse
|
30
|
Niewerth D, van Meerloo J, Jansen G, Assaraf YG, Hendrickx TC, Kirk CJ, Anderl JL, Zweegman S, Kaspers GJL, Cloos J. Anti-leukemic activity and mechanisms underlying resistance to the novel immunoproteasome inhibitor PR-924. Biochem Pharmacol 2014; 89:43-51. [PMID: 24552657 DOI: 10.1016/j.bcp.2014.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 12/22/2022]
Abstract
PR-924 is a novel prototypic immunoproteasome inhibitor bearing markedly enhanced specificity for the β5i immunoproteasome subunit, compared to the classical proteasome inhibitor bortezomib. Here, we assessed the growth inhibitory potential of PR-924 in three human hematologic malignancy cell lines (CCRF-CEM, THP1, and 8226) and their bortezomib-resistant sublines. Parental cells displayed equal sensitivity to PR-924 (IC₅₀: 1.5-2.8 μM), whereas their bortezomib-resistant tumor lines displayed a 10-12 fold cross-resistance to PR-924. However, PR-924 cross-resistance factors for bortezomib-resistant sublines were markedly lower compared to the resistance factors to bortezomib. Proteasome inhibition experiments confirmed that PR-924 specifically inhibited β5i activity, even far below concentrations that exerted anti-proliferative activity. We further determined whether PR-924 activity might be compromised by acquisition of drug resistance phenomena. Indeed, CEM cells rendered stepwise resistant to 20 μM PR-924 (CEM/PR20) displayed 13-fold PR-924-resistance and 10-fold cross-resistance to bortezomib. CEM/PR20 cells were devoid of mutations in the PSMB8 gene (encoding β5i), but acquired Met45Ile mutation in the PSMB5 gene (encoding constitutive β5), consistent with β5 mutations observed in bortezomib-resistant cells. Furthermore, compared to parental CEM cells, CEM/PR20 cells exhibited 2.5-fold upregulation of constitutive proteasome subunit expression, whereas immunoproteasome subunit expression was 2-fold decreased. In conclusion, PR-924 displayed potent anti-leukemic activity including toward bortezomib-resistant leukemia cells. Despite the specificity of PR-924 to the β5i immunoproteasome subunit, its anti-leukemic effect required concentrations that blocked both β5 and β5i subunits. This is underscored by the emergence of mutations in PSMB5 rather than in PSMB8.
Collapse
Affiliation(s)
- Denise Niewerth
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Johan van Meerloo
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands; Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerrit Jansen
- Department of Rheumatology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Tessa C Hendrickx
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Christopher J Kirk
- Research Department, Onyx Pharmaceuticals Inc., South San Francisco, CA, USA.
| | - Janet L Anderl
- Research Department, Onyx Pharmaceuticals Inc., South San Francisco, CA, USA.
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands; Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Niewerth D, Kaspers GJL, Assaraf YG, van Meerloo J, Kirk CJ, Anderl J, Blank JL, van de Ven PM, Zweegman S, Jansen G, Cloos J. Interferon-γ-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. J Hematol Oncol 2014; 7:7. [PMID: 24418325 PMCID: PMC3896789 DOI: 10.1186/1756-8722-7-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022] Open
Abstract
Background Despite encouraging results with the proteasome inhibitor bortezomib in the treatment of hematologic malignancies, emergence of resistance can limit its efficacy, hence calling for novel strategies to overcome bortezomib-resistance. We previously showed that bortezomib-resistant human leukemia cell lines expressed significantly lower levels of immunoproteasome at the expense of constitutive proteasomes, which harbored point mutations in exon 2 of the PSMB5 gene encoding the β5 subunit. Here we investigated whether up-regulation of immunoproteasomes by exposure to interferon-γ restores sensitivity to bortezomib in myeloma and leukemia cell lines with acquired resistance to bortezomib. Methods RPMI-8226 myeloma, THP1 monocytic/macrophage and CCRF-CEM (T) parental cells and sub lines with acquired resistance to bortezomib were exposed to Interferon-γ for 24-48 h where after the effects on proteasome subunit expression and activity were measured, next to sensitivity measurements to proteasome inhibitors bortezomib, carfilzomib, and the immunoproteasome selective inhibitor ONX 0914. At last, siRNA knockdown experiments of β5i and β1i were performed to identify the contribution of these subunits to sensitivity to proteasome inhibition. Statistical significance of the differences were determined using the Mann-Whitney U test. Results Interferon-γ exposure markedly increased immunoproteasome subunit mRNA to a significantly higher level in bortezomib-resistant cells (up to 30-fold, 10-fold, and 6-fold, in β1i, β5i, and β2i, respectively) than in parental cells. These increases were paralleled by elevated immunoproteasome protein levels and catalytic activity, as well as HLA class-I. Moreover, interferon-γ exposure reinforced sensitization of bortezomib-resistant tumor cells to bortezomib and carfilzomib, but most prominently to ONX 0914, as confirmed by cell growth inhibition studies, proteasome inhibitor-induced apoptosis, activation of PARP cleavage and accumulation of polyubiquitinated proteins. This sensitization was abrogated by siRNA silencing of β5i but not by β1i silencing, prior to pulse exposure to interferon-γ. Conclusion Downregulation of β5i subunit expression is a major determinant in acquisition of bortezomib-resistance and enhancement of its proteasomal assembly after induction by interferon-γ facilitates restoration of sensitivity in bortezomib-resistant leukemia cells towards bortezomib and next generation (immuno) proteasome inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Niewerth D, Franke NE, Jansen G, Assaraf YG, van Meerloo J, Kirk CJ, Degenhardt J, Anderl J, Schimmer AD, Zweegman S, de Haas V, Horton TM, Kaspers GJL, Cloos J. Higher ratio immune versus constitutive proteasome level as novel indicator of sensitivity of pediatric acute leukemia cells to proteasome inhibitors. Haematologica 2013; 98:1896-904. [PMID: 24056819 DOI: 10.3324/haematol.2013.092411] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ex vivo sensitivity of pediatric leukemia cells to the proteasome inhibitor bortezomib was compared to 3 next generation proteasome inhibitors: the epoxyketone-based irreversible proteasome inhibitors carfilzomib, its orally bio-available analog ONX 0912, and the immunoproteasome inhibitor ONX 0914. LC50 values were determined by MTT cytotoxicity assays for 29 childhood acute lymphoblastic leukemia and 12 acute myeloid leukemia patient samples and correlated with protein expression levels of the constitutive proteasome subunits (β5, β1, β2) and their immunoproteasome counterparts (β5i, β1i, β2i). Acute lymphoblastic leukemia cells were up to 5.5-fold more sensitive to proteasome inhibitors than acute myeloid leukemia cells (P<0.001) and the combination of bortezomib and dexamethasone proved additive/synergistic in the majority of patient specimens. Although total proteasome levels in acute lymphoblastic leukemia and acute myeloid leukemia cells did not differ significantly, the ratio of immuno/constitutive proteasome was markedly higher in acute lymphoblastic leukemia cells over acute myeloid leukemia cells. In both acute lymphoblastic leukemia and acute myeloid leukemia, increased ratios of β5i/β5, β1i/β1 and β2i/β2 correlated with increased sensitivity to proteasome inhibitors. Together, differential expression levels of constitutive and immunoproteasomes in pediatric acute lymphoblastic leukemia and acute myeloid leukemia constitute an underlying mechanism of sensitivity to bortezomib and new generation proteasome inhibitors, which may further benefit from synergistic combination therapy with drugs including glucocorticoids.
Collapse
|
33
|
Napper AD, Watson VG. Targeted drug discovery for pediatric leukemia. Front Oncol 2013; 3:170. [PMID: 23847761 PMCID: PMC3703567 DOI: 10.3389/fonc.2013.00170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022] Open
Abstract
Despite dramatic advances in the treatment of pediatric leukemia over the past 50 years, there remain subsets of patients who respond poorly to treatment. Many of the high-risk cases of childhood leukemia with the poorest prognosis have been found to harbor specific genetic signatures, often resulting from chromosomal rearrangements. With increased understanding of the genetic and epigenetic makeup of high-risk pediatric leukemia has come the opportunity to develop targeted therapies that promise to be both more effective and less toxic than current chemotherapy. Of particular importance is an understanding of the interconnections between different targets within the same cancer, and observations of synergy between two different targeted therapies or between a targeted drug and conventional chemotherapy. It has become clear that many cancers are able to circumvent a single specific blockade, and pediatric leukemias are no exception in this regard. This review highlights the most promising approaches to new drugs and drug combinations for high-risk pediatric leukemia. Key biological evidence supporting selection of molecular targets is presented, together with a critical survey of recent progress toward the discovery, pre-clinical development, and clinical study of novel molecular therapeutics.
Collapse
Affiliation(s)
- Andrew D Napper
- High-Throughput Screening and Drug Discovery Laboratory, Nemours Center for Childhood Cancer Research, A.I. duPont Hospital for Children , Wilmington, DE , USA
| | | |
Collapse
|