1
|
Cellular and molecular profiling of graft injury post renal transplantation. Curr Opin Organ Transplant 2016; 22:36-45. [PMID: 27941467 DOI: 10.1097/mot.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Continues advancements in assessing methods for biomolecules that have assisted to identify surrogate candidate biomarkers that can be used to monitor the transplanted organ. These high-throughput methods can help researchers to significantly speed up the identification and the validation steps, which are crucial factors for biomarker discovery efforts. However, this task in transplantation confronts multiple limitations. The review summarizes main findings using 'omics approaches in the evaluation of different types of allograft injury with the overarching aim of evaluating the next steps for transferring the available data to the clinical setting. RECENT FINDINGS Significant discoveries have been made about the molecular and cellular mechanisms that associate with graft injury that may lead to early biomarkers of graft injury (prediction and diagnosis) with the goal of improving long-term outcomes by extending the lifespan of the graft and/or identifying new therapeutic targets. SUMMARY Common efforts among researchers are needed for transferring biomarkers to the clinical setting and, moreover, elucidate pathways that may allow for early interventions to avoid fibrosis progression and graft loss. Large and prospective studies for validation of current available data under strict analytical evaluation are needed to move biomarkers from the discovery phase to validation and clinical implementation.
Collapse
|
2
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
3
|
Heo SB, Lim SW, Jhun JY, Cho ML, Chung BH, Yang CW. Immunological benefits by ginseng through reciprocal regulation of Th17 and Treg cells during cyclosporine-induced immunosuppression. J Ginseng Res 2015; 40:18-27. [PMID: 26843818 PMCID: PMC4703771 DOI: 10.1016/j.jgr.2015.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/08/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It is not clear whether ginseng affects cyclosporine A (CsA)-induced desirable immunosuppressive action. In this study, we evaluated the immunological influence of combined treatment of ginseng with CsA. METHODS Using CD4+ T cells from mouse spleens stimulated with the T cell receptor (TCR) or allogeneic antigen-presenting cells (APCs), we examined the differentiation of naïve T cells into T helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and their cytokine production during treatment by Korean Red Ginseng extract (KRGE) and/or CsA. The influence of KRGE on the allogeneic T cell response was evaluated by mixed lymphocyte reaction (MLR). We also evaluated whether signal transducer and activator of transcription 3 (STAT3) and STAT5 are implicated in this regulation. RESULTS Under TCR stimulation, KRGE treatment did not affect the population of CD4+interferon gamma (IFNγ)+ and CD4+interleukin (IL)-4+ cells and their cytokine production compared with CsA alone. Under the Th17-polarizing condition, KRGE significantly reduced the number of CD4+IL-17+ cells and CD4+/phosphorylated STAT3 (p-STAT3)+ cells, but increased the number of CD4+CD25+forkhead box P3 (Foxp3)+ cells and CD4+/p-STAT5+ cells compared with CsA alone. In allogeneic APCs-stimulated CD4+ T cells, KRGE significantly decreased total allogeneic T cell proliferation. Consistent with the effects of TCR stimulation, KRGE reduced the number of CD4+IL-17+ cells and increased the number of CD4+CD25+Foxp3+ cells under the Th17-polarizing condition. CONCLUSION KRGE has immunological benefits through the reciprocal regulation of Th17 and Treg cells during CsA-induced immunosuppression.
Collapse
Affiliation(s)
- Seong Beom Heo
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; Transplant Research Center, The Catholic University of Korea, Seoul, Korea
| | - Sun Woo Lim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; Transplant Research Center, The Catholic University of Korea, Seoul, Korea
| | - Joo Yeon Jhun
- Centre for Rheumatic Diseases, The Catholic University of Korea, Seoul, Korea
| | - Mi La Cho
- Centre for Rheumatic Diseases, The Catholic University of Korea, Seoul, Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; Transplant Research Center, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; Transplant Research Center, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Kim KW, Chung BH, Kim BM, Cho ML, Yang CW. The effect of mammalian target of rapamycin inhibition on T helper type 17 and regulatory T cell differentiation in vitro and in vivo in kidney transplant recipients. Immunology 2015; 144:68-78. [PMID: 24974886 DOI: 10.1111/imm.12351] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022] Open
Abstract
Sirolimus (SRL) is a promising alternative to calcineurin inhibitors, such as tacrolimus (TAC), in kidney transplant recipients (KTRs), but the immunological benefits of conversion from calcineurin inhibitors to SRL are not fully investigated. In the present study, we evaluated the effect of conversion from TAC to SRL on the T helper type 17/regulatory T (Th17/Treg) axis in three separate studies. First, the effect of SRL on the Th17/Treg axis was evaluated in vitro using peripheral blood mononuclear cells (PBMCs). Second, the effect of conversion from TAC to SRL on the Th17/Treg axis was studied in KTRs. Finally, the effect of SRL on CD8(+) Treg cells was evaluated. In vitro analysis of PBMCs isolated from KTRs showed that SRL suppressed Th17 cell differentiation but TAC did not. Conversion from TAC to SRL markedly decreased the number of effector memory CD8(+) T cells and significantly increased the proportion of CD4(+) and CD8(+) Treg cells compared with TAC in KTRs. SRL treatment induced the CD8(+) Treg cells, and these cells inhibited the proliferation of allogeneic CD4(+) T cells and Th17 cells. In conclusion, conversion from TAC to SRL favourably regulates Th17 and Treg cell differentiation in KTRs. These findings provide a rationale for conversion from TAC to SRL in KTRs.
Collapse
Affiliation(s)
- Kyoung Woon Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Seocho-gu, South Korea
| | | | | | | | | |
Collapse
|
5
|
Guan Q, Li S, Gao S, Chen H, Nguan CYC, Du C. Reduction of chronic rejection of renal allografts by anti-transforming growth factor-β antibody therapy in a rat model. Am J Physiol Renal Physiol 2013; 305:F199-207. [PMID: 23552866 DOI: 10.1152/ajprenal.00665.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is no effective treatment for chronic rejection (CR) that largely limits long-term survival of kidney transplants. Transforming growth factor (TGF)-β is a fibrogenic factor for tissue fibrosis. This study was to test the efficacy of an anti-TGF-β antibody in preventing the CR of renal allografts in a preclinical model. Male Lewis rats (RT1¹) were orthotopically transplanted with donor kidneys from male Fischer 344 (RT11v1) rats and were treated with either anti-TGF-β or a control antibody. The CR of renal allografts was assessed by semiquantitative histological analyses, and intragraft cytokines and fibrosis-related genes ware examined by PCR arrays. Compared with the control antibody, anti-TGF-β antibody treatment significantly reduced recipients' proteinuria (P = 0.0002), and CR in renal transplants, which was indicated by the fewer injured renal tubules, glomeruli, and interlobular arterioles or arteries, and by less mononuclear cell infiltration and interstitial fibrosis in the anti-TGF-β antibody-treated group (P < 0.05), but not significantly attenuate the ratios of different infiltrating leukocytes. These pathological changes were associated with downregulation of TGF-β1, TGF-β2, and proinflammatory cytokines, or with upregulation of anti-fibrotic HGF, BMP5, and BMP7. The therapeutic effect of the anti-TGF-β antibody was further confirmed by its prevention of graft dysfunction, indicated by lower levels of serum creatinine and blood urea nitrogen or higher creatinine clearance in anti-TGF-β antibody-treated recipients compared with those in control recipients (P < 0.05). In conclusion, the anti-TGF-β antibody (1D11) treatment significantly reduces CR of renal allografts in rats, suggesting the therapeutic potential of this antibody therapy for treating CR of kidney transplants in patients.
Collapse
Affiliation(s)
- Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Dysregulation of Th17 cells during the early post-transplant period in patients under calcineurin inhibitor based immunosuppression. PLoS One 2012; 7:e42011. [PMID: 22848688 PMCID: PMC3405048 DOI: 10.1371/journal.pone.0042011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/02/2012] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence suggests that Th17 cells play a role in the development of chronic allograft injury in transplantation of various organs. However, the influence of current immunosuppressants on Th17-associated immune responses has not been fully investigated. We prospectively investigated the changes in Th17 cells in peripheral blood mononuclear cells (PBMCs) collected before and 1 and 3 months after KT in 26 patients and we investigated the suppressive effect of tacrolimus on Th17 in vitro. In the early posttransplant period, the percentage of Th17 cells and the proportion of IL-17-producing cells in the effector memory T cells (TEM) were significantly increased at 3 months after transplantation compared with before transplantation (P<0.05), whereas Th1/Th2 cells and TEM cells were significantly decreased. The degree of increase in Th17 during the early posttransplant period was significantly associated with allograft function at 1 year after transplantation (r = 0.4, P<0.05). In vitro, tacrolimus suppressed Th1 and Th2 cells in a concentration-dependent manner, but did not suppress Th17 cells even at high concentration. This suggests that current immunosuppression based on tacrolimus is inadequate to suppress Th17 cells in KTRs, and dysregulation of Th17 may be associated with the progression of CAD.
Collapse
|
7
|
Fekecs T, Kalmár-Nagy K, Szakály P, Németh K, Moezzi M, Zapf I, Horváth OP, Bartho-Szekeres J, Ferencz A. Changes of progesterone-induced blocking factor in patients after kidney transplantation. Transplant Proc 2012; 43:3694-6. [PMID: 22172828 DOI: 10.1016/j.transproceed.2011.08.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/27/2011] [Accepted: 08/31/2011] [Indexed: 01/10/2023]
Abstract
The prediction of graft rejection can play an important part in graft survival. Analysis of immune reactions has shown that graft rejection shares mechanisms with recurrent abortions during pregnancy. Progesterone-induced blocking factor (PIBF), a mediator of progesterone that blocks natural killer cell activity in peripheral blood, produces antiabortive effects. The aim of this study was to examine the PIBF concentration in the urine of transplanted recipients. The study included 116 white adults (70 men and 46 women) of median age 49.3 years, who had undergone kidney transplantations. The median duration after transplantation was 3.46 years. The average period between renal disease and our measurement was 12.3 years, and the median interval between graft rejection and our study was 1.75 years. Urine samples were used to measure PIBF concentrations by an enzyme-linked immunsorbent assay. PIBF urinary concentrations decreased significantly in patients who experienced ≥1 rejection episode (31.8±2.2 ng/mL) compared with those without any episode (22.7±1.2 ng/ml; P<.01). Moreover, the urinary PIBF level was significantly lower among patients who had increased creatinine and urea nitrogen levels in blood samples (P<.05 and P<.01, respectively). Decreased PIBF values in kidney transplant patients followed previous rejection episodes. A close negative correlation was observed between urinary PIBF concentrations and blood levels of creatinine and urea nitrogen. These findings suggested that PIBF detection may predict graft rejection in transplant recipients.
Collapse
Affiliation(s)
- T Fekecs
- Department of Dermatology, Venereology and Oncodermatology, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Scian MJ, Maluf DG, David KG, Archer KJ, Suh JL, Wolen AR, Mba MU, Massey HD, King AL, Gehr T, Cotterell A, Posner M, Mas V. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant 2011; 11:2110-22. [PMID: 21794090 PMCID: PMC3184368 DOI: 10.1111/j.1600-6143.2011.03666.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the advances in immunosuppression, renal allograft attrition over time remains unabated due to chronic allograft dysfunction (CAD) with interstitial fibrosis (IF) and tubular atrophy (TA). We aimed to evaluate microRNA (miRNA) signatures in CAD with IF/TA and appraise correlation with paired urine samples and potential utility in prospective evaluation of graft function. MiRNA signatures were established between CAD with IF/TA versus normal allografts by microarray. Validation of the microarray results and prospective evaluation of urine samples was performed using real-time quantitative-PCR (RT-qPCR). Fifty-six miRNAs were identified in samples with CAD-IF/TA. Five miRNAs were selected for further validation based on array fold change, p-value and in silico predicted mRNA targets. We confirmed the differential expression of these five miRNAs by RT-qPCR using an independent set of samples. Differential expression was detected for miR-142-3p, miR-204, miR-107 and miR-211 (p < 0.001) and miR-32 (p < 0.05). Furthermore, differential expression of miR-142-3p (p < 0.01), miR-204 (p < 0.01) and miR-211 (p < 0.05) was also observed between patient groups in urine samples. A characteristic miRNA signature for IF/TA that correlates with paired urine samples was identified. These results support the potential use of miRNAs as noninvasive markers of IF/TA and for monitoring graft function.
Collapse
Affiliation(s)
- MJ Scian
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - DG Maluf
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - KG David
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - KJ Archer
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645,
Virginia Commonwealth University, Department of Biostatistics P.O. Box 980032, 730 East Broad Street, Room 3006, Richmond, VA 23298-0032
| | - JL Suh
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - AR Wolen
- Virginia Commonwealth University, Department of Human and Molecular Genetics P.O. Box 980033, 1101 East Marshall Street, Richmond, Virginia 23298-0033
| | - MU Mba
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - HD Massey
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - AL King
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - T Gehr
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - A Cotterell
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - M Posner
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645
| | - V Mas
- Virginia Commonwealth University, Department of Surgery P.O. Box 980645, 1200 E. Broad Street, Richmond, VA 23219-0645,
Virginia Commonwealth University, Department of Pathology PO Box 980662, 1101 E. Marshall Street, Richmond, VA 23298-0662,Corresponding author: Virginia Commonwealth University, Department of Surgery P.O. Box 980645 1200 E. Broad Street, Richmond VA 23219-0645
| |
Collapse
|
9
|
Mas VR, Mueller TF, Archer KJ, Maluf DG. Identifying biomarkers as diagnostic tools in kidney transplantation. Expert Rev Mol Diagn 2011; 11:183-96. [PMID: 21405969 DOI: 10.1586/erm.10.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a critical need for biomarkers for early diagnosis, treatment response, and surrogate end point and outcome prediction in organ transplantation, leading to a tailored and individualized treatment. Genomic and proteomic platforms have provided multiple promising new biomarkers during the last few years. However, there is still no routine application of any of these markers in clinical transplantation. This article will discuss the existing gap between biomarker discovery and clinical application in the kidney transplant setting. Approaches to implementing biomarker monitoring into clinical practice will also be discussed.
Collapse
Affiliation(s)
- Valeria R Mas
- Molecular Transplant Research Laboratory, Transplant Division, Department of Surgery, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
10
|
Gene expression changes are associated with loss of kidney graft function and interstitial fibrosis and tubular atrophy: diagnosis versus prediction. Transplantation 2011; 91:657-65. [PMID: 21242883 DOI: 10.1097/tp.0b013e3182094a5a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Loss of kidney graft function due to interstitial fibrosis (IF) and tubular atrophy (TA) is the most common cause of kidney allograft loss. METHODS One hundred one allograft tissues (26 samples with IF/TA, 17 normal allografts, and an independent biopsy group collected at 3 month [n=34] posttransplantation) underwent microarray analysis to identify early detection/diagnostic biomarkers of IF/TA. Profiling of 24 allograft biopsies collected at or after 9-month posttransplantation (range 9-18 months) was used for validation. Three-month posttransplantation biopsies were classified as IF/TA nonprogressors (group 1) or progressors (group 2) using graft function and histology at 9-month posttransplantation. RESULTS We identified 2223 differentially expressed probe sets between IF/TA and normal allograft biopsies using a Bonferroni correction. Genes up-regulated in IF/TA were primarily involved in pathways related to T-cell activation, natural killer cell-mediated cytotoxicity, and programmed cell death. A least absolute shrinkage and selection operator model was derived from the differentially expressed probe sets, resulting in a final model that included 10 probe sets and had 100% training set accuracy. The N-fold crossvalidated error was 2.4% (sensitivity 95.8% and specificity 100%). When 3-month biopsies were tested using the model, all the samples were classified as normal. However, evaluating gene expression of the 3-month biopsies and fitting a new penalized model, 100% sensitivity was observed in classifying the samples as group1 or 2. This model was evaluated in the sample set collected at or after 9-month posttransplantation. CONCLUSIONS An IF/TA gene expression signature was identified, and it was useful for diagnosis but not prediction. However, gene expression profiles at 3 months might predict IF/TA progression.
Collapse
|
11
|
Transplantomics and biomarkers in organ transplantation: a report from the first international conference. Transplantation 2011; 91:379-82. [PMID: 21278631 DOI: 10.1097/tp.0b013e3182105fb8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Mueller TF, Solez K, Mas V. Assessment of kidney organ quality and prediction of outcome at time of transplantation. Semin Immunopathol 2011; 33:185-99. [PMID: 21274534 DOI: 10.1007/s00281-011-0248-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/13/2011] [Indexed: 12/13/2022]
Abstract
The critical importance of donor organ quality, i.e., number of surviving nephrons, ability to withstand injury, and capacity for repair in determining short- and long-term outcomes is becoming increasingly clear. This review provides an overview of studies to assess donor kidney quality and subsequent transplant outcomes based on clinical pathology and transcriptome-based variables available at time of transplantation. Prediction scores using clinical variables function when applied to large data sets but perform poorly for the individual patient. Histopathology findings in pre-implantation or post-reperfusion biopsies help to assess structural integrity of the donor kidney, provide information on pre-existing donor disease, and can serve as a baseline for tracking changes over time. However, more validated approaches of analysis and prospective studies are needed to reduce the number of discarded organs, improve allocation, and allow prediction of outcomes. Molecular profiling detects changes not seen by morphology or captured by clinical markers. In particular, molecular profiles provide a quantitative measurement of inflammatory burden or immune activation and reflect coordinated changes in pathways associated with injury and repair. However, description of transcriptome patterns is not an end in itself. The identification of predictive gene sets and the application to an individualized patient management needs the integration of clinical and pathology-based variables, as well as more objective reference markers of transplant function, post-transplant events, and long-term outcomes.
Collapse
Affiliation(s)
- Thomas F Mueller
- Division of Nephrology and Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | | | | |
Collapse
|