1
|
Zheng Z, Chen Y, Wang Y, Li Y, Cheng Q. MicroRNA-513b-5p targets COL1A1 and COL1A2 associated with the formation and rupture of intracranial aneurysm. Sci Rep 2021; 11:14897. [PMID: 34290266 PMCID: PMC8295310 DOI: 10.1038/s41598-021-94116-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Collagen-type I alpha 1 chain (COL1A1) and COL1A2 are abnormally expressed in intracranial aneurysm (IA), but their mechanism of action remains unclear. This study was performed to investigate the mechanism of COL1A1 and COL1A2 affecting the occurrence and rupture of IA. Quantitative real-time polymerase chain reaction was used to measure the expression of hsa-miR-513b-5p, COL1A1, COL1A2, TNF-α, IL-6, MMP2, MMP3, MMP9 and TIMP4 in patients with ruptured IA (RA) (n = 100), patients with un-ruptured IA (UA) (n = 100), and controls (n = 100). Then, human vascular smooth muscle cells (HASMCs) were cultured, and dual luciferase reporter assay was performed to analyse the targeting relationship between miR-513b-5p and COL1A1 or COL1A2. The effects of the miR-513b-5p mimic and inhibitor on the proliferation, apoptosis, and death of HASMC and the RIP1-RIP3-MLKL and matrix metalloproteinase pathways were also explored. The effect of silencing and over-expression of COL1A1 and COL1A2 on the role of miR-513b-5p were also evaluated. Finally, the effects of TNF-α on miR-513b-5p targeting COL1A1 and COL1A2 were tested. Compared with those in the control group, the serum mRNA levels of miR-513b-5p, IL-6 and TIMP4 were significantly decreased in the RA and UA groups, but COL1A1, COL1A2, TNF-α, IL-1β, MMP2, MMP3 and MMP9 were significantly increased (p < 0.05). Compared with those in the UA group, the expression of COL1A1, COL1A2, TNF-α, IL-1β and MMP9 was significantly up-regulated in the RA group (p < 0.05). Results from the luciferase reporter assay showed that COL1A1 and COL1A were the direct targets of miR-513b-5p. Further studies demonstrated that miR-513b-5p targeted COL1A1/2 to regulate the RIP1-RIP3-MLKL and MMP pathways, thereby enhancing cell death and apoptosis. Over-expression of COL1A1 or COL1A2, rather than silencing COL1A1/2, could improve the inhibitory effect of miR-513b-5p on cell activity by regulating the RIP1-RIP3-MLKL and MMP pathways. Furthermore, over-expression of miR-513b-5p and/or silencing COL1A1/2 inhibited the TNF-α-induced cell proliferation and enhanced the TNF-α-induced cell death and apoptosis. The mechanism may be related to the inhibition of collagen I and TIMP4 expression and promotion of the expression of RIP1, p-RIP1, p-RIP3, p-MLKL, MMP2 and MMP9. MiR-513b-5p targeted the inhibition of COL1A1/2 expression and affected HASMC viability and extracellular mechanism remodelling by regulating the RIP1-RIP3-MLKL and MMP pathways. This process might be involved in the formation and rupture of IA.
Collapse
Affiliation(s)
- Zheng Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
- The Department of Neurology, Fujian Provincial Hospital, Fuzhou, No. 134, Dongjie road, Fuzhou, 350001, People's Republic of China
| | - Yan Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
- The Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yinzhou Wang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
- The Department of Neurology, Fujian Provincial Hospital, Fuzhou, No. 134, Dongjie road, Fuzhou, 350001, People's Republic of China
| | - Yongkun Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
- The Department of Neurology, Fujian Provincial Hospital, Fuzhou, No. 134, Dongjie road, Fuzhou, 350001, People's Republic of China
| | - Qiong Cheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
- The Department of Neurology, Fujian Provincial Hospital, Fuzhou, No. 134, Dongjie road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
2
|
Huang P, Xu M, He XY. Elevation of MicroRNA-126 Levels in Intracranial Aneurysm and Bioinformatic Analysis of Potential Molecular Mechanisms. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study is to investigation of microRNA-126 levels in patients with intracranial aneurysm and bioinformatic analysis of the molecular mechanisms involved. A total of 166 patients with ICA who were hospitalized or examined in our hospital from September 2015 to December 2017 were used
as the experimental group (ICA group). This group included 120 patients with unruptured intracranial aneurysm (UICA; UICA group) and 46 patients with ruptured intracranial aneurysm (RICA); RICA group). The UICA group was further subdivided into 42 surgical groups (S group) and 78 nonsurgical
groups (NS group). Sixty-three normal people without intracranial aneurysms were selected as the control group. RT-PCR was used to quantitatively detect the relative expression of microRNA- 126 in peripheral blood mononuclear cells at the time of admission and immediately after surgery. The
UCSC database was used to analyze the gene locus and homology of microRNA-126. The TargetScan database and CoMeTa database were used to predict the potential target genes of microRNA-126. The DAVID database was used to enrich the function of potential target genes of microRNA-126 (GO enrichment)
and KEGG pathway enrichment for analysis. The expression level of microRNA-126 in peripheral blood was significantly higher in the ICA group than in the control group (P <0.01), significantly higher in the RICA group than in the UICA group (P <0.05). Expression was also
higher in the NS group than in the S group but the difference was nonsignificant (P >0.05). A total of 15 potential target genes including ITGA6, CRK, PCDH7, and ADAM9 were identified through the target gene prediction software and GO analysis and KEGG pathway analysis showed that
the function of the microRNA-126 target gene was mainly focused on protein binding and the FAS signaling pathway. In Conclusion the microRNA-126 is up-regulated in ICA patients and affects ICA by regulating multiple target genes in the FAS signaling pathway.
Collapse
Affiliation(s)
- Pan Huang
- Department of Neurology, People’s Hospital of Deyang City, 173 TaiShan North Road, Deyang, Sichuan, 618000, China
| | - Min Xu
- Department of Neurology, The Second People’s Hospital of Deyang City, 340 Minjiang West Road, Deyang, Sichuan, 618000, China
| | - Xiao-Ying He
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan, 646000, China
| |
Collapse
|
3
|
Aoki T. [Future prospects for the development of a novel medical therapy for intracranial aneurysm]. Nihon Yakurigaku Zasshi 2016; 148:86-91. [PMID: 27478047 DOI: 10.1254/fpj.148.86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
4
|
Abstract
Most of cerebral aneurysms (CAs) are incidentally discovered without any neurological symptoms and the risk of rupture of CAs is relatively higher in Japanese population. The goal of treatments for patients with CAs is complete exclusion of the aneurysmal rupture risk for their lives. Since two currently available major treatments, microsurgical clipping and endovascular coiling, have inherent incompleteness to achieve cure of CAs with some considerable treatment risks, and there is no effective surgical or medical intervention to inhibit the formation of CAs in patients with ruptured and unruptured CAs, new treatment strategies with lower risk and higher efficacy should be developed to prevent the formation, growth, and rupture of CAs. Preemptive medicine for CAs should be designed to prevent or delay the onset of symptoms from CAs found in an asymptomatic state or inhibit the de novo formation of CAs, but we have no definite methods to distinguish rupture-prone aneurysms from rupture-resistant ones. Recent advancements in the research of CAs have provided us with some clues, and one of the new treatment strategies for CAs will be developed based on the findings that several inflammatory pathways may be involved in the formation, growth, and rupture of CAs. Preemptive medicine for CAs will be established with specific biomarkers and imaging modalities which can sensor the development of CAs.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Innovation Center for Immunoregulation Technologies and Drugs, Kyoto University Graduate School of Medicine
| | | |
Collapse
|
5
|
Fukuda M, Aoki T. Molecular basis for intracranial aneurysm formation. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:13-5. [PMID: 25366592 DOI: 10.1007/978-3-319-04981-6_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intracranial aneurysm (IA) is a socially important disease both because it has a high prevalence and because of the severity of resultant subarachnoid hemorrhages after IA rupture. The major concern of current IA treatment is the lack medical therapies that are less invasive than surgical procedures for many patients. The current situation is mostly caused by a lack of knowledge regarding the regulating mechanisms of IA formation. Hemodynamic stress, especially high wall shear stress, loaded on arterial bifurcation sites is recognized as a trigger of IA formation from studies performed in the field of fluid dynamics. On the other hand, many studies using human specimens have also revealed the presence of active inflammatory responses, such as the infiltration of macrophages, in the pathogenesis of IA. Because of these findings, recent experimental studies, mainly using animal models of IA, have revealed some of the molecular mechanisms linking hemodynamic stress and long-lasting inflammation in IA walls. Currently, we propose that IA is a chronic inflammatory disease regulated by a positive feedback loop consisting of the cyclooxygenase (COX)-2 - prostaglandin (PG) E2 - prostaglandin E receptor 2 (EP2) - nuclear factor (NF)-κB signaling pathway triggered under hemodynamic stress and macrophage infiltration via NF-κB-mediated monocyte chemoattractant protein (MCP)-1 induction. These findings indicate future directions for the development of therapeutic drugs for IAs.
Collapse
Affiliation(s)
- Miyuki Fukuda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
6
|
Aoki T, Fukuda M, Nishimura M, Nozaki K, Narumiya S. Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation. Acta Neuropathol Commun 2014; 2:34. [PMID: 24685329 PMCID: PMC3974421 DOI: 10.1186/2051-5960-2-34] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
Background Intracranial aneurysm (IA) is a socially important disease due to its high incidence in the general public and the severity of resultant subarachnoid hemorrhage that follows rupture. Despite the social importance of IA as a cause of subarachnoid hemorrhage, there is no medical treatment to prevent rupture, except for surgical procedures, because the mechanisms regulating IA formation are poorly understood. Therefore, these mechanisms should be elucidated to identify a therapeutic target for IA treatment. In human IAs, the presence of inflammatory responses, such as an increase of tumor necrosis factor (TNF)-alpha, have been observed, suggesting a role for inflammation in IA formation. Recent investigations using rodent models of IAs have revealed the crucial role of inflammatory responses in IA formation, supporting the results of human studies. Thus, we identified nuclear factor (NF)-kappaB as a critical mediator of inflammation regulating IA formation, by inducing downstream pro-inflammatory genes such as MCP-1, a chemoattractant for macrophages, and COX-2. In this study, we focused on TNF-alpha signaling as a potential cascade that regulates NF-kappaB-mediated IA formation. Results We first confirmed an increase in TNF-alpha content in IA walls during IA formation, as expected based on human studies. Consistently, the activity of TNF-alpha converting enzyme (TACE), an enzyme responsible for TNF-alpha release, was induced in the arterial walls after aneurysm induction in a rat model. Next, we subjected tumor necrosis factor receptor superfamily member 1a (TNFR1)-deficient mice to the IA model to clarify the contribution of TNF-alpha-TNFR1 signaling to pathogenesis, and confirmed significant suppression of IA formation in TNFR1-deficient mice. Furthermore, in the IA walls of TNFR1-deficient mice, inflammatory responses, including NF-kappaB activation, subsequent expression of MCP-1 and COX-2, and infiltration of macrophages into the IA lesion, were greatly suppressed compared with those in wild-type mice. Conclusions In this study, using rodent models of IAs, we clarified the crucial role of TNF-alpha-TNFR1 signaling in the pathogenesis of IAs by inducing inflammatory responses, and propose this signaling as a potential therapeutic target for IA treatment.
Collapse
|
7
|
Tsuji K, Aoki T, Fukuda M, Nozaki K. Statins as a Candidate of Drugs for Intracranial Aneurysm Treatment. Health (London) 2014. [DOI: 10.4236/health.2014.612180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Su L, Zhang Y, Zhang CY, Zhang AL, Mei XL, Zhao ZJ, Han JG, Zhao LJ. Genetic screening for mutations in the chip gene in intracranial aneurysm patients of Chinese Han nationality. Asian Pac J Cancer Prev 2013; 14:1687-9. [PMID: 23679257 DOI: 10.7314/apjcp.2013.14.3.1687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We performed a case-control study to investigate whether SNPs of CHIP might affect the development of IA in Chinese Han nationality. We believe we are the first to have screened IA patients for mutations in the CHIP gene to determine the association with these variants. The study group comprised 224 Chinese Han nationality patients with at least one intracranial aneurysm and 238 unrelated healthy Han nationality controls. Genomic DNA was isolated from blood leukocytes. The entire coding regions of CHIP were genotyped by PCR amplification and DNA sequencing. Differences in genotype and allele frequencies between patients and controls were tested by the chi-square method. Genotype and allele frequencies of the SNP rs116166850 was demonstrated to be in Hardy-Weinberg equilibrium. No significant difference in genotype or allele frequencies between case and control groups was detected at the SNP. Our data do not support the hypothesis of a major role for the CHIP gene in IA development in the Chinese Han population.
Collapse
Affiliation(s)
- Li Su
- Department of Neurosurgery, the First Affiliated Hospital of Baotou Medical College, Baotou, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Roder C, Kasuya H, Harati A, Tatagiba M, Inoue I, Krischek B. Meta-analysis of microarray gene expression studies on intracranial aneurysms. Neuroscience 2012; 201:105-13. [DOI: 10.1016/j.neuroscience.2011.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
|
11
|
Abstract
The rupture of cerebral aneurysm (CA) and subsequent subarachnoid hemorrhage can cause fatal results. Recent experimental findings have suggested that the mechanism of CA formation is based on chronic inflammation in arterial walls by hemodynamic force. Endothelial nitric oxide synthase (eNOS) protects arterial walls from vascular inflammation by relieving hemodynamic force through nitric oxide (NO) production. Thus, the expression and protective role of eNOS in CA formation have been investigated in this study. In this study, experimental induced rodent CA models by carotid ligation and systemic hypertension were used. The expression of eNOS was examined in rat CA models and revealed that it was decreased at the site of CA formation. Next, CA was induced in eNOS(-/-) mice to clarify the role of eNOS in CA formation. In eNOS(-/-) mice, the incidence of CA formation was similar to that found in wild-type mice. In CA walls of eNOS(-/-) mice, the expression of neuronal nitric oxide synthase (nNOS) was upregulated compared with that in wild-type mice, suggesting the compensatory effect of nNOS. Hence, eNOS(-/-) nNOS(-/-) mice were generated, underwent CA induction and confirmed that eNOS(-/-) nNOS(-/-) mice exhibited an increased incidence of CA formation accompanied by accelerated macrophage infiltration. These results suggested that the deficiency of eNOS could be compensated by nNOS upregulation in cerebral arteries and that the eNOS and nNOS complementarily had the protective role in CA formation. The results of this study will provide us with new insight about the mechanisms of CA formation and the functional redundancy between eNOS and nNOS in cerebral arteries.
Collapse
|
12
|
The development and the use of experimental animal models to study the underlying mechanisms of CA formation. J Biomed Biotechnol 2010; 2011:535921. [PMID: 21253583 PMCID: PMC3018658 DOI: 10.1155/2011/535921] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/06/2010] [Accepted: 12/13/2010] [Indexed: 11/17/2022] Open
Abstract
Cerebral aneurysms (CAs) have a high prevalence and can cause a lethal subarachnoid hemorrhage. Currently, CAs can only be treated with invasive surgical procedures. To unravel the underlying mechanisms of CA formation and to develop new therapeutic drugs for CAs, animal models of CA have been established, modified, and analyzed. Experimental findings from these models have clarified some of the potential mechanisms of CA formation, especially the relationship between hemodynamic stress and chronic inflammation. Increased hemodynamic stress acting at the site of bifurcation of cerebral arteries triggers an inflammatory response mediated by various proinflammatory molecules in arterial walls, inducing pathological changes in the models similar to those observed in the walls of human CAs. Findings from animal studies have provided new insights into CA formation and may contribute to the development of new therapeutic drugs for CAs.
Collapse
|
13
|
Aoki T, Nishimura M. Molecular mechanism of cerebral aneurysm formation focusing on NF-κB as a key mediator of inflammation. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12573-010-0021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|