1
|
da Silva JGL, Gonçalves AAM, Oliveira LT, Garcia GM, Batista MA, de Mendonça LZ, Viana KF, Sant’Ana RDCO, Melo Júnior OADO, Silveira-Lemos D, Dutra WO, Martins-Filho OA, Galdino AS, de Moura SAL, Mosqueira VCF, Giunchetti RC. Polymeric Delivery Systems as a Potential Vaccine against Visceral Leishmaniasis: Formulation Development and Immunogenicity. Vaccines (Basel) 2023; 11:1309. [PMID: 37631877 PMCID: PMC10459565 DOI: 10.3390/vaccines11081309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Recent studies suggest that the association of antigens in microparticles increases the anti-Leishmania vaccine immunogenicity. This study aims to investigate the in situ effect of the adjuvant performance consisting of chitosan-coated poly(D,L-lactic) acid submicrometric particles (SMP) and analyze the inflammatory profile and toxicity. Two formulations were selected, SMP1, containing poly(D,L-lactide) (PLA) 1% wt/v and chitosan 1% wt/v; and SMP2, containing PLA 5% wt/v and chitosan 5% wt/v. After a single dose of the unloaded SMP1 or SMP2 in mice, the SMPs promoted cell recruitment without tissue damage. In addition, besides the myeloperoxidase (MPO) activity having demonstrated similar results among the analyzed groups, a progressive reduction in the levels of N-acetyl-β-D-glucosaminidase (NAG) until 72 h was observed for SMPs. While IL-6 levels were similar among all the analyzed groups along the kinetics, only the SMPs groups had detectable levels of TNF-α. Additionally, the Leishmania braziliensis antigen was encapsulated in SMPs (SMP1Ag and SMP2Ag), and mice were vaccinated with three doses. The immunogenicity analysis by flow cytometry demonstrated a reduction in NK (CD3-CD49+) cells in all the SMPs groups, in addition to impairment in the T cells subsets (CD3+CD4+) and CD3+CD8+) and B cells (CD19+) of the SMP2 group. The resulting data demonstrate that the chitosan-coated SMP formulations stimulate the early events of an innate immune response, suggesting their ability to increase the immunogenicity of co-administered Leishmania antigens.
Collapse
Affiliation(s)
- João Guilherme Lino da Silva
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (J.G.L.d.S.); (A.A.M.G.); (M.A.B.); (L.Z.d.M.); (K.F.V.); (R.d.C.O.S.); (O.A.d.O.M.J.); (W.O.D.)
- Nucleus for Research in Biological Sciences (NUPEB), Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Ana Alice Maia Gonçalves
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (J.G.L.d.S.); (A.A.M.G.); (M.A.B.); (L.Z.d.M.); (K.F.V.); (R.d.C.O.S.); (O.A.d.O.M.J.); (W.O.D.)
| | - Liliam Teixeira Oliveira
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.T.O.); (G.M.G.); (V.C.F.M.)
| | - Giani Martins Garcia
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.T.O.); (G.M.G.); (V.C.F.M.)
| | - Maurício Azevedo Batista
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (J.G.L.d.S.); (A.A.M.G.); (M.A.B.); (L.Z.d.M.); (K.F.V.); (R.d.C.O.S.); (O.A.d.O.M.J.); (W.O.D.)
| | - Ludmila Zanandreis de Mendonça
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (J.G.L.d.S.); (A.A.M.G.); (M.A.B.); (L.Z.d.M.); (K.F.V.); (R.d.C.O.S.); (O.A.d.O.M.J.); (W.O.D.)
| | - Kelvinson Fernandes Viana
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (J.G.L.d.S.); (A.A.M.G.); (M.A.B.); (L.Z.d.M.); (K.F.V.); (R.d.C.O.S.); (O.A.d.O.M.J.); (W.O.D.)
| | - Rita de Cássia Oliveira Sant’Ana
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (J.G.L.d.S.); (A.A.M.G.); (M.A.B.); (L.Z.d.M.); (K.F.V.); (R.d.C.O.S.); (O.A.d.O.M.J.); (W.O.D.)
| | - Otoni Alves de Oliveira Melo Júnior
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (J.G.L.d.S.); (A.A.M.G.); (M.A.B.); (L.Z.d.M.); (K.F.V.); (R.d.C.O.S.); (O.A.d.O.M.J.); (W.O.D.)
| | - Denise Silveira-Lemos
- Integrated Research Group on Biomarkers, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte 30190-009, Brazil;
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (J.G.L.d.S.); (A.A.M.G.); (M.A.B.); (L.Z.d.M.); (K.F.V.); (R.d.C.O.S.); (O.A.d.O.M.J.); (W.O.D.)
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-060, Brazil
| | - Olindo Assis Martins-Filho
- Laboratory of Diagnosis and Monitoring Biomarkers, René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte 30190-009, Brazil;
| | - Alexsandro Sobreira Galdino
- Laboratory of Microorganism Biotechnology, Federal University of São João Del-Rei (UFSJ), Midwest Campus, Divinópolis 35501-296, Brazil;
| | - Sandra Aparecida Lima de Moura
- Laboratory of Biomaterials and Experimental Pathology, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-136, Brazil;
| | - Vanessa Carla Furtado Mosqueira
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil; (L.T.O.); (G.M.G.); (V.C.F.M.)
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (J.G.L.d.S.); (A.A.M.G.); (M.A.B.); (L.Z.d.M.); (K.F.V.); (R.d.C.O.S.); (O.A.d.O.M.J.); (W.O.D.)
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-060, Brazil
| |
Collapse
|
2
|
González MAC, Gonçalves AAM, Ottino J, Leite JC, Resende LA, Melo-Júnior OA, Silveira P, Cardoso MS, Fujiwara RT, Bueno LL, Santos RL, de Carvalho TF, Garcia GM, Paes PRDO, Galdino AS, Chávez-Fumagalli MA, Melo MM, Silveira-Lemos D, Martins-Filho OA, Dutra WO, Mosqueira VCF, Giunchetti RC. Vaccination with Formulation of Nanoparticles Loaded with Leishmania amazonensis Antigens Confers Protection against Experimental Visceral Leishmaniasis in Hamster. Vaccines (Basel) 2023; 11:vaccines11010111. [PMID: 36679956 PMCID: PMC9863486 DOI: 10.3390/vaccines11010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Visceral leishmaniasis (VL) is a fatal disease caused by the protozoa Leishmania infantum for which dogs are the main reservoirs. A vaccine against canine visceral leishmaniasis (CVL) could be an important tool in the control of human and CVL by reducing the infection pressure of L. infantum. Despite the CVL vaccine available on the market, the Brazilian Ministry of Health did not implement the use of it in their control programs. In this sense, there is an urgent need to develop more efficient vaccines. In this study, the association between two polymeric nanoformulations, (poly (D, L-lactic) acid (PLA) polymer) loading Leishmania amazonensis antigens, was evaluated as a potential immunobiological agent against VL using golden hamsters as an experimental model. The results indicated that no significant adverse reactions were observed in animals vaccinated with LAPSmP. LAPSmP presented similar levels of total anti-Leishmania IgG as compared to LAPSmG. The LAPSmP and LAPSmG groups showed an intense reduction in liver and spleen parasitic load by qPCR. The LAPSmP and LAPSmG vaccines showed exceptional results, indicating that they may be promising candidates as a VL vaccine.
Collapse
Affiliation(s)
- Marco Antonio Cabrera González
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil
- Estación Experimental Agraria Baños del Inca, Instituto Nacional de Innovación Agraria, Cajamarca 06000, Peru
| | - Ana Alice Maia Gonçalves
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Jennifer Ottino
- Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Jaqueline Costa Leite
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Lucilene Aparecida Resende
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Otoni Alves Melo-Júnior
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Patrícia Silveira
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Mariana Santos Cardoso
- Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Ricardo Toshio Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Lilian Lacerda Bueno
- Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | | | - Giani Martins Garcia
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil
| | | | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru
| | - Marília Martins Melo
- Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Denise Silveira-Lemos
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Olindo Assis Martins-Filho
- FIOCRUZ-Minas Gerais, Laboratório de Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou, Belo Horizonte 30190-002, MG, Brazil
| | - Walderez Ornelas Dutra
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais—INCT-DT, Belo Horizonte 31270-901, MG, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
- Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais—INCT-DT, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: or ; Tel.: +55-31-3409-3003
| |
Collapse
|
3
|
Polylactide Nanoparticles as a Biodegradable Vaccine Adjuvant: A Study on Safety, Protective Immunity and Efficacy against Human Leishmaniasis Caused by Leishmania Major. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248677. [PMID: 36557812 PMCID: PMC9783570 DOI: 10.3390/molecules27248677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Leishmaniasis is the 3rd most challenging vector-borne disease after malaria and lymphatic filariasis. Currently, no vaccine candidate is approved or marketed against leishmaniasis due to difficulties in eliciting broad immune responses when using sub-unit vaccines. The aim of this work was the design of a particulate sub-unit vaccine for vaccination against leishmaniasis. The poly (D,L-lactide) nanoparticles (PLA-NPs) were developed in order to efficiently adsorb a recombinant L. major histone H2B (L. major H2B) and to boost its immunogenicity. Firstly, a study was focused on the production of well-formed nanoparticles by the nanoprecipitation method without using a surfactant and on the antigen adsorption process under mild conditions. The set-up preparation method permitted to obtain H2B-adsorbed nanoparticles H2B/PLA (adsorption capacity of about 2.8% (w/w)) with a narrow size distribution (287 nm) and a positive zeta potential (30.9 mV). Secondly, an in vitro release assay performed at 37 °C, pH 7.4, showed a continuous release of the adsorbed H2B for almost 21 days (30%) from day 7. The immune response of H2B/PLA was investigated and compared to H2B + CpG7909 as a standard adjuvant. The humoral response intensity (IgG) was substantially similar between both formulations. Interestingly, when challenged with the standard parasite strain (GLC94) isolated from a human lesion of cutaneous leishmaniasis, mice showed a significant reduction in footpad swelling compared to unvaccinated ones, and no deaths occurred until week 17th. Taken together, these results demonstrate that PLA-NPs represent a stable, cost-effective delivery system adjuvant for use in vaccination against leishmaniasis.
Collapse
|
4
|
Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, Mohan U, Ravichandiran V, Mandal D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. Biomed Pharmacother 2021; 141:111920. [PMID: 34328115 DOI: 10.1016/j.biopha.2021.111920] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The study of tropical diseases like leishmaniasis, a parasitic disease, has not received much attention even though it is the second-largest infectious disease after malaria. As per the WHO report, a total of 0.7-1.0 million new leishmaniasis cases, which are spread by 23 Leishmania species in more than 98 countries, are estimated with an alarming 26,000-65,000 death toll every year. Lack of potential vaccines along with the cost and toxicity of amphotericin B (AmB), the most common drug for the treatment of leishmaniasis, has raised the interest significantly for new formulations and drug delivery systems including nanoparticle-based delivery as anti-leishmanial agents. The size, shape, and high surface area to volume ratio of different NPs make them ideal for many biological applications. The delivery of drugs through liposome, polymeric, and solid-lipid NPs provides the advantage of high biocomatibilty of the carrier with reduced toxicity. Importantly, NP-based delivery has shown improved efficacy due to targeted delivery of the payload and synergistic action of NP and payload on the target. This review analyses the advantage of NP-based delivery over standard chemotherapy and natural product-based delivery system. The role of different physicochemical properties of a nanoscale delivery system is discussed. Further, different ways of nanoformulation delivery ranging from liposome, niosomes, polymeric, metallic, solid-lipid NPs were updated along with the possible mechanisms of action against the parasite. The status of current nano-vaccines and the future potential of NP-based vaccine are elaborated here.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vishnu Kant
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Utpal Mohan
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India; National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
5
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
6
|
Lima LR, Andrade FK, Alves DR, de Morais SM, Vieira RS. Anti-acetylcholinesterase and toxicity against Artemia salina of chitosan microparticles loaded with essential oils of Cymbopogon flexuosus, Pelargonium x ssp and Copaifera officinalis. Int J Biol Macromol 2020; 167:1361-1370. [PMID: 33217462 DOI: 10.1016/j.ijbiomac.2020.11.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
Essential oils (EOs) are bioactive compounds with therapeutic potential for use as alternatives or as support to conventional treatments. However, EOs present limitations, such as sensibility to environmental factors, which can be overcome through microencapsulation. The objective of this study was to produce, by spray drying, chitosan microparticles (CMs) loaded with EO of Lemongrass (Cymbopogon flexuosus), Geranium (Pelargonium x ssp) and Copaiba (Copaifera officinalis). Physicochemical and biological characterization of these microparticles showed that CMs presented spherical morphology, had an average size range of 2-3 μm with positive zeta potential (ZP) values, and enhanced thermal stability, compared to free EO. The encapsulation efficiency (EE) ranged from 4.8-58.6%, depending on the oil's properties. In vitro EO release from CMs was determined at different pHs, with 94% release observed in acid media. All microparticles were non-hemolytic at concentrations of up to 0.1 mg·mL-1. EOs and CMs presented acetylcholinesterase (AChE) inhibition activity (IC 50 ranged from 11.92 to 28.18 μg·mL-1). Geranium and Copaiba EOs presented higher toxicity against Artemia salina, and greater inhibition of acetylcholinesterase, indicating potential bioactivity for Alzheimer's disease (AD). Our findings demonstrate that CM systems may show promise for the controlled release of these EOs.
Collapse
Affiliation(s)
- Laysa Rocha Lima
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fabia Karine Andrade
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniela Ribeiro Alves
- Laboratory of Chemistry of Natural Products, Center for Science and Technology, State University of Ceará, Fortaleza, CE, Brazil
| | - Selene Maia de Morais
- Laboratory of Chemistry of Natural Products, Center for Science and Technology, State University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
7
|
Rajpoot K. Solid Lipid Nanoparticles: A Promising Nanomaterial in Drug Delivery. Curr Pharm Des 2020; 25:3943-3959. [PMID: 31481000 DOI: 10.2174/1381612825666190903155321] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
The solid lipid nanoparticles (SLNs) usually consists of active drug molecules along with solid lipids, surfactants, and/or co-surfactants. They possess some potential features such as nano-size, surface with a free functional group to attach ligands, and as well they prove safe homing for both lipophilic as well as hydrophilic molecules. As far as synthesis is concerned, SLNs can be prepared by employing various techniques viz., homogenization techniques (e.g., high-pressure, high-speed, cold, or hot homogenization), spray drying technique, ultrasonication, solvent emulsification, double emulsion technique, etc. Apart from this, they are characterized by different methods for determining various parameters like particle-size, polydispersity-index, surface morphology, DSC, XRD, etc. SLNs show good stability as well as the ability for surface tailoring with the specific ligand, which makes them a suitable candidate in the therapy of numerous illnesses, especially in the targeting of the cancers. In spite of this, SLNs have witnessed their application via various routes e.g., oral, parenteral, topical, pulmonary, rectal routes, etc. Eventually, SLNs have also shown great potential for delivery of gene/DNA, vaccines, as well as in cosmeceuticals. Hence, SLNs have emerged as a promising nanomaterial for efficient delivery of various Active Pharmaceutical Ingredients (APIs).
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Pharmaceutical Research Project Laboratory, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495 009, Chhattisgarh, India
| |
Collapse
|
8
|
Phanse Y, Carrillo-Conde BR, Ramer-Tait AE, Roychoudhury R, Broderick S, Pohl N, Rajan K, Narasimhan B, Wannemuehler MJ, Bellaire BH. Functionalization promotes pathogen-mimicking characteristics of polyanhydride nanoparticle adjuvants. J Biomed Mater Res A 2017; 105:2762-2771. [PMID: 28556563 DOI: 10.1002/jbm.a.36128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 11/08/2022]
Abstract
Rational design of adjuvants and delivery systems will promote development of next-generation vaccines to control emerging and re-emerging diseases. To accomplish this, understanding the immune-enhancing properties of new adjuvants relative to those induced by natural infections can help with the development of pathogen-mimicking materials that will effectively initiate innate immune signaling cascades. In this work, the surfaces of polyanhydride nanoparticles composed of sebacic acid (SA) and 1,6-bis(p-carboxyphenoxy) hexane were decorated with an ethylene diamine spacer partially modified with either a glycolic acid linker or an α-1,2-linked di-mannopyranoside (di-mannose) to confer "pathogen-like" properties and enhance adjuvanticity. Co-incubation of linker-modified nanoparticles with dendritic cells (DCs) elicited significant increases in surface expression of MHC I, MHC II, CD86, and CD40, and enhanced secretion of IL-6, IL-12p40, and TNF-α. An 800% increase in uptake of ethylene-diamine-spaced, linker and di-mannose functionalized polyanhydride nanoparticles was also observed. Together, our data showed that linker-functionalized polyanhydride nanoparticles demonstrate similar patterns of uptake, intracellular trafficking, particle persistence, and innate activation as did DCs exposed to Yersinia pestis or Escherichia coli. These results set the stage for rational selection of adjuvant chemistries to induce pathogen-mimicking immune responses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2762-2771, 2017.
Collapse
Affiliation(s)
- Yashdeep Phanse
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Wisconsin-Madison, Wisconsin, 53706
| | | | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Nebraska, 68588
| | - Rajarshi Roychoudhury
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, 47401
| | - Scott Broderick
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, 14260, New York
| | - Nicola Pohl
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, 47401
| | - Krishna Rajan
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, 14260, New York
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
9
|
Seyed N, Taheri T, Rafati S. Post-Genomics and Vaccine Improvement for Leishmania. Front Microbiol 2016; 7:467. [PMID: 27092123 PMCID: PMC4822237 DOI: 10.3389/fmicb.2016.00467] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of IranTehran, Iran
| | | | | |
Collapse
|
10
|
Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M. New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev 2016; 45:152-68. [DOI: 10.1039/c5cs00674k] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the recent progress in nanomedicine for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Víctor Gutiérrez
- Freie Universität Berlin
- Institute for Chemistry and Biochemistry
- 14195 Berlin
- Germany
| | - Amedea B. Seabra
- Exact and Earth Sciences Department
- Universidade Federal de São Paulo
- Diadema
- Brazil
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas
- Universidad de León
- León
- Spain
| | | | - Marcelo Calderón
- Freie Universität Berlin
- Institute for Chemistry and Biochemistry
- 14195 Berlin
- Germany
| |
Collapse
|
11
|
Abstract
Increasing attention is being given to lipid nanocarriers (LNs) as drug delivery systems, due to the advantages offered of a higher biocompatibility and lower toxicity compared with polymeric nanoparticles. Many administration routes are being investigated for LNs, including topical, oral and parenteral ones. LNs are also proposed for specific applications such as cancer treatment, gene therapy, diagnosis and medical devices production. However, the high number of published research articles does not match an equal amount of patents. A recent Review of ours, published in Pharmaceutical Patent Analyst, reported the patents proposing novel methods for the production of LNs. This review work discusses recent patents, filed in 2007-2013 and dealing with the industrial applications of lipid-based nanocarriers for the vectorization of therapeutically relevant molecules, as well as biotech products such as proteins, gene material and vaccines, in the pharmaceutical, diagnostic and biomedical areas.
Collapse
|
12
|
Gebril AM, Lamprou DA, Alsaadi MM, Stimson WH, Mullen AB, Ferro VA. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:971-9. [PMID: 24374362 DOI: 10.1016/j.nano.2013.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 01/14/2023]
Abstract
UNLABELLED Vaccines administered parenterally have been developed against gonadotrophin-releasing hormone (GnRH) for anti-fertility and anti-cancer purposes. The aim of this study was to demonstrate whether mucosal delivery using GnRH immunogens entrapped in lipid nanoparticles (LNP) could induce anti-GnRH antibody titers. Immunogens consisting of KLH (keyhole limpet hemocyanin) conjugated to either GnRH-I or GnRH-III analogues were entrapped in LNP. Loaded non-ionic surfactant vesicles (NISVs) were administered subcutaneously, while nasal delivery was achieved using NISV in xanthan gum and oral delivery using NISV containing deoxycholate (bilosomes). NISV and bilosomes had similar properties: they were spherical, in the nanometre size range, with a slightly negative zeta potential and surface properties that changed with protein loading and inclusion of xanthan gum. Following immunization in female BALB/c mice, systemic antibody responses were similar for both GnRH-I and GnRH-III immunization. Only nasal delivery proved to be successful in terms of producing systemic and mucosal antibodies. FROM THE CLINICAL EDITOR The main research question addressed in this study was whether mucosal delivery using gonadotrophin-releasing hormone immunogens entrapped in lipid nanoparticles could induce anti-GnRH antibody titers. Only nasal delivery proved to be successful in terms of producing systemic and mucosal antibodies with this approach.
Collapse
Affiliation(s)
- Ayman M Gebril
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK; Faculty of Veterinary Medicine, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Dimitrios A Lamprou
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Manal M Alsaadi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - William H Stimson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Alexander B Mullen
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
13
|
Asthana S, Gupta PK, Chaurasia M, Dube A, Chourasia MK. Polymeric colloidal particulate systems: intelligent tools for intracellular targeting of antileishmanial cargos. Expert Opin Drug Deliv 2013; 10:1633-51. [PMID: 24147603 DOI: 10.1517/17425247.2013.838216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Targeted cargo delivery systems can overcome drawbacks associated with antileishmanials delivery, by defeating challenges of physiological barriers. Various colloidal particulate systems have been developed in the past; few of them even achieved success in the market, but still are limited in some ways. AREAS COVERED This review is focused on the pathobiology of leishmaniasis, interactions of particulate systems with biological environment, targeting strategies along with current conventional and vaccine therapies with special emphasis on polymeric nanotechnology for effective antileishmanial cargo delivery. EXPERT OPINION The problems concerned with limited accessibility of chemotherapeutic cargos in conventional modes to Leishmania-harboring macrophages, their toxicity, and resistant parasitic strain development can be sorted out through target-specific delivery of cargos. Vaccination is another therapeutic approach employing antigen alone or adjuvant combinations delivered by means of a carrier, and can provide preventive measures against human leishmaniasis (HL). Therefore, there is an urgent need of designing site-specific antileishmanial cargo carriers for safe and effective management of HL. Among various colloidal carriers, polymeric particulate systems hold tremendous potential as an effective delivery tool by providing control over spatial and temporal distribution of cargos after systemic or localized administration along with enhancing their stability profile at a comparatively cost-effective price leading to improved chances of commercial applicability.
Collapse
Affiliation(s)
- Shalini Asthana
- CSIR-Central Drug Research Institute, CDRI communication No. 8523, Pharmaceutics Division , Lucknow-226031, UP , India +91 522 2612411 18 ; +91 522 2623405 ;
| | | | | | | | | |
Collapse
|
14
|
Luo Z, Li P, Deng J, Gao N, Zhang Y, Pan H, Liu L, Wang C, Cai L, Ma Y. Cationic polypeptide micelle-based antigen delivery system: a simple and robust adjuvant to improve vaccine efficacy. J Control Release 2013; 170:259-67. [PMID: 23742880 DOI: 10.1016/j.jconrel.2013.05.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 04/03/2013] [Accepted: 05/27/2013] [Indexed: 01/09/2023]
Abstract
Modern subunit vaccines with purified or recombinant antigens are important alternatives to the traditional vaccines. However, there remains a big challenge to elicit potent antibody production and CD8 T cell response. Nanoparticle-based antigen delivery systems have emerged as an innovative strategy to improve the efficacy of subunit vaccines. The present study reported self-assembled cationic micelles based on poly(ethylene glycol)-b-poly(L-lysine)-b-poly(L-leucine) (PEG-PLL-PLLeu) hybrid polypeptides as a simple and potent vaccine delivery system. The results showed that the PEG-PLL-PLLeu micelles spontaneously encapsulated OVA antigens with great loading capacity (LC=55%) and stability. More importantly, the polypeptide micelle formulations robustly enhanced vaccine-induced antibody production by 70-90 fold, which could be due to their capability of inducing dendritic cell maturation, enhancing antigen uptake and presentation, as well as promoting germinal center formation. Furthermore, the polypeptide micelles could simultaneously encapsulate OVA and polyriboinosinic: polyribocytidylic acid (PIC), a TLR3 agonist, to synergistically augment tumor specific cytotoxic-T-lymphocyte (CTL) response. Hence, the polypeptide micelle-based antigen delivery system could be a robust adjuvant to enhance vaccine-induced immune responses.
Collapse
Affiliation(s)
- Zichao Luo
- Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Micro/nanoparticle adjuvants for antileishmanial vaccines: Present and future trends. Vaccine 2013; 31:735-49. [DOI: 10.1016/j.vaccine.2012.11.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 01/04/2023]
|
16
|
Gerdts V, Mutwiri G, Richards J, van Drunen Littel-van den Hurk S, Potter AA. Carrier molecules for use in veterinary vaccines. Vaccine 2012; 31:596-602. [PMID: 23219438 DOI: 10.1016/j.vaccine.2012.11.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/16/2012] [Accepted: 11/25/2012] [Indexed: 11/27/2022]
Abstract
The practice of immunization of animals and humans has been carried out for centuries and is generally accepted as the most cost effective and sustainable method of infectious disease control. Over the past 20 years there have been significant changes in our ability to produce antigens by conventional extraction and purification, recombinant DNA and synthesis. However, many of these products need to be combined with carrier molecules to generate optimal immune responses. This review covers selected topics in the development of carrier technologies for use in the veterinary vaccine field, including glycoconjugate and peptide vaccines, microparticle and nanoparticle formulations, and finally virus-like particles.
Collapse
Affiliation(s)
- Volker Gerdts
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | |
Collapse
|
17
|
Abstract
Infectious diseases are responsible for an overwhelming number of deaths worldwide and their clinical management is often hampered by the emergence of multi-drug-resistant strains. Therefore, prevention through vaccination currently represents the best course of action to combat them. However, immune escape and evasion by pathogens often render vaccine development difficult. Furthermore, most currently available vaccines were empirically designed. In this review, we discuss why rational design of vaccines is not only desirable but also necessary. We introduce recent developments towards specifically tailored antigens, adjuvants, and delivery systems, and discuss the methodological gaps and lack of knowledge still hampering true rational vaccine design. Finally, we address the potential and limitations of different strategies and technologies for advancing vaccine development.
Collapse
Affiliation(s)
- Christine Rueckert
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|