1
|
Borges da Silva E, Brayner Cavalcanti M, Ferreira Da Silva CS, de Salazar E Fernandes T, Azevedo Melo J, Lucena L, Maciel Netto A, Amaral A. Micronucleus assay for predicting side effects of radiotherapy for cervical cancer. Biotech Histochem 2020; 96:60-66. [PMID: 32436746 DOI: 10.1080/10520295.2020.1759143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Radiotherapy (RT) is an important treatment for cervical cancer. The quality of life of patients undergoing RT may be compromised during and following treatment by nausea, diarrhea, vomiting, burns, erythema and fistula. Cytokinesis-block micronucleus (CBMN) assays may be useful for predicting adverse effects of RT for cancer. The CBMN test is easy to perform and is reproducible for screening subjects exposed to ionizing radiation. We investigated the use of the frequency of micronuclei (MN) from peripheral blood samples, irradiated in vitro, as a possible biomarker to predict the side effects of RT in patients with cervical cancer. We used 10 patients with cervical cancer receiving RT and chemotherapy. We found a strong relation between the frequency of MN and the appearance of acute side effects of RT for cervical cancer. We suggest that the methodology presented here may be useful for predicting side effects of RT for patients affected by cervical cancer and who have undergone chemotherapy.
Collapse
Affiliation(s)
- Edvane Borges da Silva
- Academic Center of Vitória, Federal University of Pernambuco , Recife, Pernambuco, Brazil
| | | | | | | | - Jonathan Azevedo Melo
- Royal Institute of Radiotherapy, Royal Portuguese Hospital , Recife, Pernambuco, Brazil
| | - Luciano Lucena
- Department of Nuclear Energy, Federal University of Pernambuco , Recife, Pernambuco, Brazil
| | - André Maciel Netto
- Department of Nuclear Energy, Federal University of Pernambuco , Recife, Pernambuco, Brazil
| | - Ademir Amaral
- Department of Nuclear Energy, Federal University of Pernambuco , Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Subhashree M, Venkateswarlu R, Karthik K, Shangamithra V, Venkatachalam P. DNA damage and the bystander response in tumor and normal cells exposed to X-rays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 821:20-27. [PMID: 28735740 DOI: 10.1016/j.mrgentox.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
Abstract
Monolayer and suspension cultures of tumor (BMG-1, CCRF-CEM), normal (AG1522, HADF, lymphocytes) and ATM-mutant (GM4405) human cells were exposed to X-rays at doses used in radiotherapy (high dose and high dose-rate) or radiological imaging (low dose and low dose-rate). Radiation-induced DNA damage, its persistence, and possible bystander effects were evaluated, based on DNA damage markers (γ-H2AX, p53ser15) and cell-cycle-specific cyclins (cyclin B1 and cyclin D1). Dose-dependent DNA damage and a dose-independent bystander response were seen after exposure to high dose and high dose-rate radiation. The level of induced damage (expression of p53ser15, γ-H2AX) depended on ATM status. However, low dose and dose-rate exposures neither increased expression of marker proteins nor induced a bystander response, except in the CCRF-CEM cells. Bystander effects after high-dose irradiation may contribute to stochastic and deterministic effects. Precautions to protect unexposed regions or to inhibit transmission of DNA damage signaling might reduce radiation risks.
Collapse
Affiliation(s)
- M Subhashree
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - R Venkateswarlu
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - K Karthik
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - V Shangamithra
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India.
| |
Collapse
|
4
|
Basheerudeen SAS, Kanagaraj K, Jose M, Ozhimuthu A, Paneerselvam S, Pattan S, Joseph S, Raavi V, Perumal V. Entrance surface dose and induced DNA damage in blood lymphocytes of patients exposed to low-dose and low-dose-rate X-irradiation during diagnostic and therapeutic interventional radiology procedures. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 818:1-6. [DOI: 10.1016/j.mrgentox.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 01/03/2023]
|
5
|
Santos NFGD, Silva RF, Pinto MMPL, Silva EBDA, Tasat DR, Amaral A. Active caspase-3 expression levels as bioindicator of individual radiosensitivity. AN ACAD BRAS CIENC 2017; 89:649-659. [PMID: 28492727 DOI: 10.1590/0001-3765201720160697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Several molecules and events involved in cell response to radiation-induced damage have been investigated towards a personalized radiotherapy. Considering the importance of active caspase-3 in the proteolytic cascade that ensures radiation-induced apoptosis execution, this research was designed to evaluate the expression levels of this protein as a bioindicator of individual radiosensitivity. Peripheral blood samples of 10 healthy individuals were gamma-irradiated (cobalt-60 source) with 1, 2 and 4 Gy (control: non-irradiated samples), and active caspase-3 expression levels were measured in lymphocytes, by flow cytometry, ex vivo and after different times of in vitro incubation (24, 48 and 72 hours). Short-term incubation of 24 h was the most adequate condition to evidence correlations between dose radiation and active caspase-3 expression. For each radiation dose, it was observed a significant inter-individual variation in active caspase-3 expression intensity, suggesting that this parameter may be suitable for evidence individual radiosensitivity. The methodology presented and discussed in this work may help to predict healthy tissues response to radiation exposure toward the better patient outcome.
Collapse
Affiliation(s)
- Neyliane F G Dos Santos
- Laboratório de Modelagem e Biodosimetria Aplicada, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rafael F Silva
- Departamento de Ciências Naturais e Exatas, Universidade de Pernambuco, Garanhuns, PE, Brazil
| | - Marcela M P L Pinto
- Laboratório de Modelagem e Biodosimetria Aplicada, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Edvane B DA Silva
- Laboratório de Modelagem e Biodosimetria Aplicada, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Deborah R Tasat
- Laboratory of Lung Cell Biology, National University of General San Martín, Buenos Aires, Argentina
| | - Ademir Amaral
- Laboratório de Modelagem e Biodosimetria Aplicada, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|