1
|
Pham ML, Maghsoomi S, Brandl M. An Electrochemical Aptasensor for the Detection of Freshwater Cyanobacteria. BIOSENSORS 2024; 14:28. [PMID: 38248405 PMCID: PMC10813013 DOI: 10.3390/bios14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Aphanizomenon is a genus of cyanobacteria that is filamentous and nitrogen-fixing and inhabits aquatic environments. This genus is known as one of the major producers of cyanotoxins that can affect water quality after the bloom period. In this study, an electrochemical aptasensor is demonstrated using a specific aptamer to detect Aphanizomenon sp. ULC602 for the rapid and sensitive detection of this bacterium. The principal operation of the generated aptasensor is based on the conformational change in the aptamer attached to the electrode surface in the presence of the target bacterium, resulting in a decrease in the current peak, which is measured by square-wave voltammetry (SWV). This aptasensor has a limit of detection (LOD) of OD750~0.3, with an extension to OD750~1.2 and a sensitivity of 456.8 μA·OD750-1·cm-2 without interference from other cyanobacteria. This is the first aptasensor studied that provides rapid detection to monitor the spread of this bacterium quickly in a targeted manner.
Collapse
Affiliation(s)
- Mai-Lan Pham
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| | - Somayeh Maghsoomi
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Martin Brandl
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| |
Collapse
|
2
|
El Fazdoune M, Bahend K, Ben Jadi S, Oubella M, García-García FJ, Bazzaoui EA, Asserghine A, Bazzaoui M. Different electrochemical techniques for the electrosynthesis of poly methylene blue in sodium saccharin aqueous medium. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Mezhuev YO, Vorobev IY, Plyushchii IV, Krivoborodov EG, Artyukhov AA, Motyakin MV, Luss AL, Ionova IS, Kovarskii AL, Derevnin IA, Dyatlov VA, Alekperov RA, Toropygin IY, Volkov MA, Shtilman MI, Korshak YV. Chemical Oxidative Polymerization of Methylene Blue: Reaction Mechanism and Aspects of Chain Structure. Polymers (Basel) 2021; 13:polym13132188. [PMID: 34209367 PMCID: PMC8271652 DOI: 10.3390/polym13132188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The kinetic regularities of the initial stage of chemical oxidative polymerization of methylene blue under the action of ammonium peroxodisulfate in an aqueous medium have been established by the method of potentiometry. It was shown that the methylene blue polymerization mechanism includes the stages of chain initiation and growth. It was found that the rate of the initial stage of the reaction obeys the kinetic equation of the first order with the activation energy 49 kJ × mol-1. Based on the proposed mechanism of oxidative polymerization of methylene blue and the data of MALDI, EPR, and IR spectroscopy methods, the structure of the polymethylene blue chain is proposed. It has been shown that polymethylene blue has a metallic luster, and its electrical conductivity is probably the result of conjugation over extended chain sections and the formation of charge transfer complexes. It was found that polymethylene blue is resistant to heating up to a temperature of 440 K and then enters into exothermic transformations without significant weight loss. When the temperature rises above 480 K, polymethylene blue is subject to endothermic degradation and retains 75% of its mass up to 1000 K.
Collapse
Affiliation(s)
- Yaroslav O. Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
- Correspondence: ; Tel.: +7-499-972-4808
| | - Igor Y. Vorobev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| | - Ivan V. Plyushchii
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| | - Efrem G. Krivoborodov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| | - Alexander A. Artyukhov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| | - Mikhail V. Motyakin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.M.); (A.L.K.)
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anna L. Luss
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| | - Irina S. Ionova
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexander L. Kovarskii
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.M.); (A.L.K.)
| | - Igor A. Derevnin
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| | - Valerie A. Dyatlov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| | - Ruslan A. Alekperov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| | - Ilya Y. Toropygin
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 119832 Moscow, Russia;
| | - Mikhail A. Volkov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Mikhail I. Shtilman
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| | - Yuri V. Korshak
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (I.Y.V.); (I.V.P.); (E.G.K.); (A.A.A.); (A.L.L.); (I.A.D.); (V.A.D.); (R.A.A.); (M.I.S.); (Y.V.K.)
| |
Collapse
|
4
|
Samyn LM, Suresh Babu R, Devendiran M, de Barros ALF. One-step electropolymerization of methylene blue films on highly flexible carbon fiber electrode as supercapacitors. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00130-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractEnergy crisis and environmental pollution have been one of the major global issues. In this regard, the search for new energy storage materials is cheap, flexible and high-performance supercapacitors electrode which has become intensive. Also, reducing the amount of organic dyes polluting in water is a great significance. Herein, one-step electropolymerization of methylene blue on carbon fiber and the resulting films were applied to the supercapacitor. The high performance is associated to the outstanding conductivity, electrochemical stability and superior mechanical flexibility of carbon fiber. A new flexible electrode for supercapacitors was successfully fabricated by demonstrating with a good electrochemical performance and a promising alternative to reduce the water pollution.
Collapse
|
5
|
Kou Y, Lu J, Jiang X, Tian B, Xue Y, Wang M, Tan L. Electrochemical Determination of Vitamin B12 Based on Cu
2+
‐Involved Fenton‐like Reaction. ELECTROANAL 2019. [DOI: 10.1002/elan.201900019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanxia Kou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Jiajia Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Xiangmei Jiang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Bowen Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Yuanyuan Xue
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Meijuan Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| | - Liang Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)College of Chemistry and Chemical EngineeringHunan Normal University Changsha 410081 PR China
| |
Collapse
|