1
|
Rodrigues DCS, Silveira MC, Pribul BR, Karam BRS, Picão RC, Kraychete GB, Pereira FM, de Lima RM, de Souza AKG, Leão RS, Marques EA, Rocha-de-Souza CM, Carvalho-Assef APD. Genomic study of Acinetobacter baumannii strains co-harboring bla OXA-58 and bla NDM-1 reveals a large multidrug-resistant plasmid encoding these carbapenemases in Brazil. Front Microbiol 2024; 15:1439373. [PMID: 39086650 PMCID: PMC11288812 DOI: 10.3389/fmicb.2024.1439373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Acinetobacter baumannii contributes significantly to the global issue of multidrug-resistant (MDR) nosocomial infections. Often, these strains demonstrate resistance to carbapenems (MDR-CRAB), the first-line treatment for infections instigated by MDR A. baumannii. Our study focused on the antimicrobial susceptibility and genomic sequences related to plasmids from 12 clinical isolates of A. baumannii that carry both the blaOXA-58 and bla NDM-1 carbapenemase genes. Methods Whole-genome sequencing with long-read technology was employed for the characterization of an A. baumannii plasmid that harbors the bla OXA-58 and blaNDM-1 genes. The location of the bla OXA-58 and bla NDM-1 genes was confirmed through Southern blot hybridization assays. Antimicrobial susceptibility tests were conducted, and molecular characterization was performed using PCR and PFGE. Results Multilocus Sequence Typing analysis revealed considerable genetic diversity among bla OXA-58 and bla NDM-1 positive strains in Brazil. It was confirmed that these genes were located on a plasmid larger than 300 kb in isolates from the same hospital, which also carry other antimicrobial resistance genes. Different genetic contexts were observed for the co-occurrence of these carbapenemase-encoding genes in Brazilian strains. Discussion The propagation of bla OXA-58 and bla NDM-1 genes on the same plasmid, which also carries other resistance determinants, could potentially lead to the emergence of bacterial strains resistant to multiple classes of antimicrobials. Therefore, the characterization of these strains is of paramount importance for monitoring resistance evolution, curbing their rapid global dissemination, averting outbreaks, and optimizing therapy.
Collapse
Affiliation(s)
- Daiana Cristina Silva Rodrigues
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Melise Chaves Silveira
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Bruno Rocha Pribul
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Bruna Ribeiro Sued Karam
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Renata Cristina Picão
- Laboratório de Investigação em Microbiologia Médica (LIMM), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gabriela Bergiante Kraychete
- Laboratório de Investigação em Microbiologia Médica (LIMM), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rildo Mendes de Lima
- Laboratório Central de Saúde Pública da Fundação de Vigilância em Saúde do Amazonas (LACEN-AM/FVS-RCP), Amazonas, Brazil
| | | | - Robson Souza Leão
- Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Elizabeth Andrade Marques
- Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Bacteriologia Aplicada à Saúde Única e Resistência Antimicrobiana (LabSUR), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Kou X, Zhu D, Zhang Y, Huang L, Liang J, Wu Z, Liu Z, Guan C, Yu L. Development and clinical validation of a dual ddPCR assay for detecting carbapenem-resistant Acinetobacter baumannii in bloodstream infections. Front Microbiol 2024; 15:1338395. [PMID: 38591042 PMCID: PMC11000175 DOI: 10.3389/fmicb.2024.1338395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 04/10/2024] Open
Abstract
Objective Acinetobacter baumannii (A. baumannii, AB) represents a major species of Gram-negative bacteria involved in bloodstream infections (BSIs) and shows a high capability of developing antibiotic resistance. Especially, carbapenem-resistant Acinetobacter baumannii (CRAB) becomes more and more prevalent in BSIs. Hence, a rapid and sensitive CRAB detection method is of urgent need to reduce the morbidity and mortality due to CRAB-associated BSIs. Methods A dual droplet digital PCR (ddPCR) reaction system was designed for detecting the antibiotic resistance gene OXA-23 and AB-specific gene gltA. Then, the specificity of the primers and probes, limit of detection (LOD), linear range, and accuracy of the assay were evaluated. Furthermore, the established assay approach was validated on 37 clinical isolates and compared with blood culture and drug sensitivity tests. Results The dual ddPCR method established in this study demonstrated strong primer and probe specificity, distinguishing CRAB among 21 common clinical pathogens. The method showed excellent precision (3 × 10-4 ng/μL, CV < 25%) and linearity (OXA-23: y = 1.4558x + 4.0981, R2 = 0.9976; gltA: y = 1.2716x + 3.6092, R2 = 0.9949). While the dual qPCR LOD is 3 × 10-3 ng/μL, the dual ddPCR's LOD stands at 3 × 10-4 ng/μL, indicating a higher sensitivity in the latter. When applied to detect 35 patients with BSIs of AB, the results were consistent with clinical blood culture identification and drug sensitivity tests. Conclusion The dual ddPCR detection method for OXA-23 and gltA developed in this study exhibits good specificity, excellent linearity, and a higher LOD than qPCR. It demonstrates reproducibility even for minute samples, making it suitable for rapid diagnosis and precision treatment of CRAB in BSIs.
Collapse
Affiliation(s)
- Xiaoxia Kou
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Detu Zhu
- Biologics Test and Evaluation Center, Guangzhou Laboratory, Guangzhou, China
| | - Yandong Zhang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liyan Huang
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiawei Liang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ziman Wu
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ze Liu
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chushi Guan
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lin Yu
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Shi J, Cheng J, Liu S, Zhu Y, Zhu M. Acinetobacter baumannii: an evolving and cunning opponent. Front Microbiol 2024; 15:1332108. [PMID: 38318341 PMCID: PMC10838990 DOI: 10.3389/fmicb.2024.1332108] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Acinetobacter baumannii is one of the most common multidrug-resistant pathogens causing nosocomial infections. The prevalence of multidrug-resistant A. baumannii infections is increasing because of several factors, including unregulated antibiotic use. A. baumannii drug resistance rate is high; in particular, its resistance rates for tigecycline and polymyxin-the drugs of last resort for extensively drug-resistant A. baumannii-has been increasing annually. Patients with a severe infection of extensively antibiotic-resistant A. baumannii demonstrate a high mortality rate along with a poor prognosis, which makes treating them challenging. Through carbapenem enzyme production and other relevant mechanisms, A. baumannii has rapidly acquired a strong resistance to carbapenem antibiotics-once considered a class of strong antibacterials for A. baumannii infection treatment. Therefore, understanding the resistance mechanism of A. baumannii is particularly crucial. This review summarizes mechanisms underlying common antimicrobial resistance in A. baumannii, particularly those underlying tigecycline and polymyxin resistance. This review will serve as a reference for reasonable antibiotic use at clinics, as well as new antibiotic development.
Collapse
Affiliation(s)
- Jingchao Shi
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianghao Cheng
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shourong Liu
- Department of Infectious Disease, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Zhu
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingli Zhu
- Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Rangel K, Chagas TPG, De-Simone SG. Acinetobacter baumannii Infections in Times of COVID-19 Pandemic. Pathogens 2021; 10:pathogens10081006. [PMID: 34451470 PMCID: PMC8399974 DOI: 10.3390/pathogens10081006] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has generated an overuse of antimicrobials in critically ill patients. Acinetobacter baumannii frequently causes nosocomial infections, particularly in intensive care units (ICUs), where the incidence has increased over time. Since the WHO declared the COVID-19 pandemic on 12 March 2020, the disease has spread rapidly, and many of the patients infected with SARS-CoV-2 needed to be admitted to the ICU. Bacterial co-pathogens are commonly identified in viral respiratory infections and are important causes of morbidity and mortality. However, we cannot neglect the increased incidence of antimicrobial resistance, which may be attributed to the excess use of antimicrobial agents during the COVID-19 pandemic. Patients with COVID-19 could be vulnerable to other infections owing to multiple comorbidities with severe COVID-19, prolonged hospitalization, and SARS-CoV-2-associated immune dysfunction. These patients have acquired secondary bacterial infections or superinfections, mainly bacteremia and urinary tract infections. This review will summarize the prevalence of A. baumannii coinfection and secondary infection in patients with COVID-19.
Collapse
Affiliation(s)
- Karyne Rangel
- FIOCRUZ, Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil
- Correspondence: (K.R.); (S.G.D.-S.); Tel.: +55-213865-8240 (K.R. & S.G.D.-S.)
| | | | - Salvatore Giovanni De-Simone
- FIOCRUZ, Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil
- Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 24220-008, Brazil
- Correspondence: (K.R.); (S.G.D.-S.); Tel.: +55-213865-8240 (K.R. & S.G.D.-S.)
| |
Collapse
|
5
|
Carbapenemase-Producing Non-Glucose-Fermenting Gram-Negative Bacilli in Africa, Pseudomonas aeruginosa and Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Int J Microbiol 2020; 2020:9461901. [PMID: 33204275 PMCID: PMC7658691 DOI: 10.1155/2020/9461901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Studies have reported that the existence of CP bacteria in Africa, but, in general, comprehensive data about the molecular epidemiology of CP organisms are limited. Therefore, this systematic review and meta-analysis expound the pooled prevalence of CP P. aeruginosa and CP A. baumannii clinical isolates in Africa. It also identified the diversity of carbapenemases or their encoding genes among the isolates in Africa. Lastly, the review observed the trends of these CP isolates in Africa. Methods A comprehensive search was performed between July 2019 and October 2019 in the following databases: PubMed, Google Scholar, and African Journal online. The included articles were published only in English. The screening was done by two authors independently. The data extracted on Excel spreadsheet were transferred to STATA 11 software for analysis. Results From a total of 1,454 articles searched, 42 articles were eligible. Most of the studies were conducted in the North Africa region. But there was no report from Central Africa. The pooled prevalence of CP P. aeruginosa and CP A. baumannii among the clinical specimens in Africa was 21.36% and 56.97%, respectively. OXA-23 and VIM were the most prevailing carbapenemase among P. aeruginosa and A. baumannii, respectively. The cumulative meta-analysis revealed a relative increment of the prevalence of CP P. aeruginosa over time in Africa but it showed a higher prevalence of CP A. baumannii isolates across years. Conclusion The review revealed a high pooled prevalence of CP A. baumannii clinical isolates in Africa which needs urgent action. Moreover, the emergence of concomitant carbapenemases, especially OXA-23 + NDM among CP A. baumannii, was also an alarming problem.
Collapse
|
6
|
García-Betancur JC, Appel TM, Esparza G, Gales AC, Levy-Hara G, Cornistein W, Vega S, Nuñez D, Cuellar L, Bavestrello L, Castañeda-Méndez PF, Villalobos-Vindas JM, Villegas MV. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2020; 19:197-213. [PMID: 32813566 DOI: 10.1080/14787210.2020.1813023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Carbapenemases are β-lactamases able to hydrolyze a wide range of β-lactam antibiotics, including carbapenems. Carbapenemase production in Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp., with and without the co-expression of other β-lactamases is a serious public health threat. Carbapenemases belong to three main classes according to the Ambler classification: class A, class B, and class D. AREAS COVERED Carbapenemase-bearing pathogens are endemic in Latin America. In this review, we update the status of carbapenemases in Latin America and the Caribbean. EXPERT OPINION Understanding the current epidemiology of carbapenemases in Latin America and the Caribbean is of critical importance to improve infection control policies limiting the dissemination of multi-drug-resistant pathogens and in implementing appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Tobias Manuel Appel
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia
| | - German Esparza
- Programa de Aseguramiento de Calidad. PROASECAL SAS, Bogotá, Colombia
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP , São Paulo, Brazil
| | | | | | - Silvio Vega
- Complejo Hospitalario Metropolitano , Ciudad de Panamá, Panama
| | - Duilio Nuñez
- Infectious Diseases División, IPS Hospital Central , Asunción, Paraguay
| | - Luis Cuellar
- Servicio de Infectologia, Instituto Nacional de Enfermedades Neoplasicas , Lima, Peru
| | | | - Paulo F Castañeda-Méndez
- Department of Infectious Diseases, Hospital San Angel Inn Universidad , Ciudad de México, Mexico
| | | | - María Virginia Villegas
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia.,Centro Médico Imbanaco . Cali, Colombia
| |
Collapse
|
7
|
Nateghi Rostami M, Mehrban F, Ghourchian S, Douraghi M. Genetic Diversity of OXA Producing Carbapenem-Resistant Acinetobacter baumannii from Environment of Tertiary Hospitals in Central Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020; 15. [DOI: 10.5812/archcid.95602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|