1
|
Pellegrini JL, González MDLÁ, Lösch LS, Merino LA, Di Conza JA. Colistin-resistant Escherichia coli mediated by the mcr-1 gene from pigs in northeastern Argentina. Rev Argent Microbiol 2025:S0325-7541(25)00007-0. [PMID: 39984394 DOI: 10.1016/j.ram.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 12/27/2024] [Indexed: 02/23/2025] Open
Abstract
The emergence and spread of multidrug-resistant Escherichia coli carrying mcr-1 is recognized as a threat to public health. The aim of this study was to determine the prevalence of the mcr-1 gene in colistin-resistant E. coli isolates from commercial pig farms in Chaco, Argentina from 2020 to 2021. A total of 140 rectal swab samples were collected from pigs in six different pig production farms. Antimicrobial susceptibility was determined by broth microdilution. mcr-1 to mcr-5 genes were identified by multiplex PCR and clonality was assessed by ERIC and REP-PCR. The prevalence of mcr-1 was 16.4% and mcr-2, mcr-3, mcr-4 and mcr-5 genes were not detected. Colistin MIC values showed a bimodal distribution with a MIC50, MIC90 and a range of 4, 8 and 4-8μg/ml, respectively. The resistance profile to other antimicrobials was: ampicillin, 87% (20); ampicillin-sulbactam, 47.8% (11); amoxicillin-clavulanic, 13% (3); chloramphenicol, 82.6% (19); ciprofloxacin, 60.9% (14); minocycline, 26.1% (5) and trimethoprim/sulfamethoxazole, 43.5% (10). Eighty-seven percent (87%) of the strains were categorized as MDR and 12 phenotypic resistance patterns with different clonality profiles were observed. A high prevalence of mcr-1 is demonstrated in colistin-free pig farms from Chaco, Argentina. The mcr-1 positive E. coli isolates showed an alarming level of multidrug resistance and high clonal diversity. It is necessary to continuously monitor the presence of the mcr-1 gene not only in pig production, but also in humans and the environment.
Collapse
Affiliation(s)
- Juan Leandro Pellegrini
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727 CP 3500, Resistencia, Chaco, Argentina.
| | - María de Los Ángeles González
- Estación Experimental Agropecuaria, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nac. N° 89 Km 227, CP 3722, Las Breñas, Chaco, Argentina
| | - Liliana Silvina Lösch
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727 CP 3500, Resistencia, Chaco, Argentina
| | - Luis Antonio Merino
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Av. Las Heras 727 CP 3500, Resistencia, Chaco, Argentina
| | - José Alejandro Di Conza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 954, CP: C1113, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP: C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Zulfiqar A, Hanif F, Irfan R, Qasim A, Usman J. Incidence of colistin heteroresistance among carbapenem-resistant Acinetobacter baumannii clinical isolates in a tertiary care hospital in Pakistan. Eur J Clin Microbiol Infect Dis 2025; 44:151-158. [PMID: 39546099 DOI: 10.1007/s10096-024-04988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE The emergence of colistin-resistant and heteroresistant strains of carbapenem-resistant Acinetobacter baumannii (CRAB) complicates treatment and exacerbates the global health crisis of drug-resistant bacteria. This study aims to investigate the incidence and clinical implications of colistin heteroresistance in carbapenem-resistant Acinetobacter baumannii isolates from a tertiary hospital in Pakistan. MATERIALS AND METHODS A total of 130 CRAB isolates were collected from December 2022 to December 2023. Colistin susceptibility was assessed using broth microdilution, and heteroresistance was detected through population analysis profiling. RESULTS Heteroresistance (HR) was identified in 31.5% (41/130) of the isolates, while 7.7% were colistin-resistant, despite initial susceptibility indicated by broth microdilution. Clinical data revealed that HR was associated with significant 14-day clinical failure but not with 30-day all-cause mortality. Heteroresistant strains showed extensive multidrug resistance, posing a serious threat to effective treatment. CONCLUSIONS The study highlights the critical need for accurate detection of colistin HR to prevent treatment failure and improve patient outcomes. The prevalence of colistin HR underscores the necessity for revised diagnostic and treatment strategies in Pakistan, emphasizing the importance of recognizing and addressing this emerging threat in healthcare settings.
Collapse
Affiliation(s)
- Azka Zulfiqar
- Department of Microbiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Faisal Hanif
- Department of Microbiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rafia Irfan
- Department of Microbiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Amber Qasim
- Department of Microbiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Javaid Usman
- Department of Microbiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
3
|
Dwibedy SK, Padhy I, Panda AK, Mohapatra SS. Prevalence of polymyxin-resistant bacterial strains in India: a systematic review and meta-analysis. J Antimicrob Chemother 2024; 79:1762-1774. [PMID: 38717452 DOI: 10.1093/jac/dkae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Polymyxins, the cationic lipopeptide antibiotics, are the last line of therapeutics against the MDR Gram-negative bacterial (GNB) pathogens. Unfortunately, the rising cases of polymyxin-resistant strains from across the globe have adversely impacted their utility. While the molecular mechanisms responsible for developing polymyxin resistance (PolR) are largely understood, the prevalence of PolR strains in India has not been investigated systematically. The current study was undertaken to primarily determine the prevalence of PolR strains in India. Moreover, the extent of the spread of mobile colistin resistance (mcr) genes among the GNB strains in India was also determined. METHOD A systematic search for articles using the relevant inclusion and exclusion criteria was performed in the applicable databases for the period January 2015 to December 2023. The included 41 studies were subjected to a meta-analysis using the Comprehensive Meta-Analysis software (V4.0). Publication biases were assessed using funnel plots and Egger's regression analysis. RESULT Considering a total of 41 studies including 24 589 bacterial isolates the present meta-analysis found the rate of PolR bacteria in India to be at 15.0% (95% CI: 11.2 to 19.8). Among the Indian States, Tamil Nadu topped with the highest prevalence of PolR at 28.3%. Investigating the contribution of the mcr genes, it was observed that among the PolR strains, 8.4% (95% CI: 4.8 to 14.3) were mcr positive. CONCLUSION The study determined the prevalence of PolR strains in India at 15.0%, which is higher than that of the global average at 10%. The study also determined that 8.4% of the PolR strains carried the mcr genes. The mcr-positive strains reported from India could be an underestimation of the actual numbers due to the non-inclusion of mcr screening in many previous studies. This study provides insight into the state of the PolR situation in India, which may be useful to develop a monitoring strategy to contain the spread of such strains and preserve the efficacy of the polymyxins.
Collapse
Affiliation(s)
- Sambit K Dwibedy
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Department of Zoology, SBRG Women's College, Berhampur 760001, Odisha, India
| | - Indira Padhy
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Aditya K Panda
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Centre of Excellence on Bioprospecting of Ethno-pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Centre of Excellence on Bioprospecting of Ethno-pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| |
Collapse
|
4
|
Collar GDS, Becker J, Moreira NK, Dornelles LS, Mott MP, Barth AL, Caierão J. Rapid colorimetric polymyxin B microelution directly from positive blood bottles: because patients with serious infections should not have to wait for results of culture-based methodologies. Eur J Clin Microbiol Infect Dis 2024; 43:1407-1417. [PMID: 38733425 DOI: 10.1007/s10096-024-04846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE To evaluate the performance of the rapid colorimetric polymyxin B microelution (RCPEm) in determining polymyxin B resistance directly from Enterobacterales-positive blood cultures. METHODS A set volume of positive blood culture bottles (diluted 1:10) was inoculated into a glucose-broth-phenol red solution (NP solution), where a polymyxin B disk was previously eluted (final concentration of 3 µg/mL). Test was read each 1 h for up to 4 h. Color change from red/orange to yellow indicated resistant isolates. Results were compared to the reference method, broth microdilution (BMD), performed from colonies grown on solid media from the same blood culture bottle. RESULTS One hundred fifty-two Enterobacterales-positive blood cultures were evaluated, 22.4% (34/152) of them resistant to polymyxin B (including 6.6% with borderline MICs). When performing directly from positive blood cultures (RCPEm-BC), specificity and sensitivity were 99.1% and 94.1%, respectively. Of note, 79.4% (27/34) of truly resistant isolates required 3 h of incubation, compared to the 18 ± 2 h incubation that microtiter plates of BMD demand before reading can be performed. CONCLUSIONS RCPEm directly from blood cultures has great potential to be part of the routine of clinical microbiology laboratories to establish polymyxin B susceptibility, impacting outcome of patients with bloodstream infections caused by carbapenem-resistant Enterobacterales.
Collapse
Affiliation(s)
- Gabriela da Silva Collar
- Laboratório de Pesquisa em Bacteriologia Clínica (LaBaC), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Julia Becker
- Laboratório de Pesquisa em Bacteriologia Clínica (LaBaC), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Kehl Moreira
- Laboratório de Pesquisa em Bacteriologia Clínica (LaBaC), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luana Silva Dornelles
- Laboratório de Microbiologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mariana Preussler Mott
- Laboratório de Microbiologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Afonso Luís Barth
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Juliana Caierão
- Laboratório de Pesquisa em Bacteriologia Clínica (LaBaC), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Zhuang J, Liu S, Du GF, Fang Z, Wu J, Li N, Zhong T, Xu J, He QY, Sun X. YjgM is a crotonyltransferase critical for polymyxin resistance of Escherichia coli. Cell Rep 2024; 43:114161. [PMID: 38678561 DOI: 10.1016/j.celrep.2024.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Lysine crotonylation has attracted widespread attention in recent years. However, little is known about bacterial crotonylation, particularly crotonyltransferase and decrotonylase, and its effects on antibiotic resistance. Our study demonstrates the ubiquitous presence of crotonylation in E. coli, which promotes bacterial resistance to polymyxin. We identify the crotonyltransferase YjgM and its regulatory pathways in E. coli with a focus on crotonylation. Further studies show that YjgM upregulates the crotonylation of the substrate protein PmrA, thereby boosting PmrA's affinity for binding to the promoter of eptA, which, in turn, promotes EptA expression and confers polymyxin resistance in E. coli. Additionally, we discover that PmrA's crucial crotonylation site and functional site is Lys 164. These significant discoveries highlight the role of crotonylation in bacterial drug resistance and offer a fresh perspective on creating antibacterial compounds.
Collapse
Affiliation(s)
- Jianpeng Zhuang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shiqin Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gao-Fei Du
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuye Fang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiayi Wu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tairan Zhong
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiayi Xu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Xu HC, Cui Y, Wang XY, Wu HB, Li W, Wang D, Lin N, Lin L, Zhang YH. Clinical analysis of colistin sulfate in the treatment of pneumonia caused by carbapenem-resistant Gram-negative bacteria. World J Clin Cases 2024; 12:2173-2181. [PMID: 38808336 PMCID: PMC11129130 DOI: 10.12998/wjcc.v12.i13.2173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Multidrug-resistant Gram-negative bacteria, exacerbated by excessive use of antimicrobials and immunosuppressants, are a major health threat. AIM To study the clinical efficacy and safety of colistin sulfate in the treatment of carbapenem-resistant Gram-negative bacilli-induced pneumonia, and to provide theoretical reference for clinical diagnosis and treatment. METHODS This retrospective analysis involved 54 patients with Gram-negative bacilli pneumonia admitted to intensive care unit of The General Hospital of the Northern Theater Command of the People's Liberation Army of China from August 2020 to June 2022. After bacteriological culture, the patients' airway secretions were collected to confirm the presence of Gram-negative bacilli. The patients were divided into the experimental and control groups according to the medication used. The research group consisted of 28 patients who received polymyxin sulfate combined with other drugs through intravenous, nebulization, or intravenous combined with nebulization, with a daily dosage of 1.5-3.0 million units. The control group consisted of 26 patients who received standard dosages of other antibiotics (including sulbactam sodium for injection, cefoperazone sodium sulbactam for injection, tigecycline, meropenem, or vaborbactam). RESULTS Of the 28 patients included in the research group, 26 patients showed improvement, treatment was ineffective for two patients, and one patient died, with the treatment efficacy rate of 92.82%. Of the 26 patients in the control group, 18 patients improved, treatment was ineffective for eight patients, and two patients died, with the treatment efficacy rate of 54.9%; significant difference was observed between the two groups (P < 0.05). The levels of white blood cell (WBC), procalcitonin (PCT), and C-reactive protein (CRP) in both groups were significantly lower after treatment than before treatment (P < 0.05), and the levels of WBC, PCT, and CRP in the research group were significantly lower than those in the control group (P < 0.05). Compared with before treatment, there were no significant changes in aspartate aminotransferase, creatinine, and glomerular filtration rate in both groups, while total bilirubin and alanine aminotransferase decreased after treatment (P < 0.05) with no difference between the groups. In patients with good clinical outcomes, the sequential organ failure assessment (SOFA) score was low when treated with inhaled polymyxin sulfate, and specific antibiotic treatment did not improve the outcome. Sepsis and septic shock as well as a low SOFA score were independent factors associated with good clinical outcomes. CONCLUSION Polymyxin sulfate has a significant effect on the treatment of patients with multiple drug-resistant Gram-negative bacilli pneumonia and other infections in the lungs and is safe and reliable. Moreover, the administration route of low-dose intravenous injection combined with nebulization shows better therapeutic effects and lower adverse reactions, providing new ideas for clinical administration.
Collapse
Affiliation(s)
- Hai-Chang Xu
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Yan Cui
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Xue-Ying Wang
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Hai-Bo Wu
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Wei Li
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Dan Wang
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Na Lin
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Lin Lin
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| | - Ying-Hui Zhang
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang 110016, Liaoning Province, China
| |
Collapse
|
7
|
Zhang L, Wang M, Qi R, Yang Y, Liu Y, Ren N, Feng Z, Liu Q, Cao G, Zong G. A novel major facilitator superfamily-type tripartite efflux system CprABC mediates resistance to polymyxins in Chryseobacterium sp. PL22-22A. Front Microbiol 2024; 15:1346340. [PMID: 38596380 PMCID: PMC11002906 DOI: 10.3389/fmicb.2024.1346340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024] Open
Abstract
Background Polymyxin B (PMB) and polymyxin E (colistin, CST) are polymyxin antibiotics, which are considered last-line therapeutic options against multidrug-resistant Gram-negative bacteria in serious infections. However, there is increasing risk of resistance to antimicrobial drugs. Effective efflux pump inhibitors (EPIs) should be developed to help combat efflux pump-mediated antibiotic resistance. Methods Chryseobacterium sp. PL22-22A was isolated from aquaculture sewage under selection with 8 mg/L PMB, and then its genome was sequenced using Oxford Nanopore and BGISEQ-500 platforms. Cpr (Chryseobacterium Polymyxins Resistance) genes encoding a major facilitator superfamily-type tripartite efflux system, were found in the genome. These genes, and the gene encoding a truncation mutant of CprB from which sequence called CprBc was deleted, were amplified and expressed/co-expressed in Escherichia coli DH5α. Minimum inhibitory concentrations (MICs) of polymyxins toward the various E. coli heterologous expression strains were tested in the presence of 2-128 mg/L PMB or CST. The pumping activity of CprABC was assessed via structural modeling using Discovery Studio 2.0 software. Moreover, the influence on MICs of baicalin, a novel MFS EPI, was determined, and the effect was analyzed based on homology modeling. Results Multidrug-resistant bacterial strain Chryseobacterium sp. PL22-22A was isolated in this work; it has notable resistance to polymyxin, with MICs for PMB and CST of 96 and 128 mg/L, respectively. A novel MFS-type tripartite efflux system, named CprABC, was identified in the genome of Chryseobacterium sp. PL22-22A. Heterologous expression and EPI assays indicated that the CprABC system is responsible for the polymyxin resistance of Chryseobacterium sp. PL22-22A. Structural modeling suggested that this efflux system provides a continuous conduit that runs from the CprB funnel through the CprC porin domain to pump polymyxins out of the cell. A specific C-terminal α-helix, CprBc, has an activation function on polymyxin excretion by CprB. The flavonoid compound baicalin was found to affect the allostery of CprB and/or obstruct the substrate conduit, and thus to inhibit extracellular polymyxin transport by CprABC. Conclusion Novel MFS-type tripartite efflux system CprABC in Chryseobacterium sp. PL22-22A mediates resistance to polymyxins, and baicalin is a promising EPI.
Collapse
Affiliation(s)
- Lu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Miao Wang
- Shandong Fengjin Biopharmaceuticals Co., Ltd., Yantai, China
| | - Rui Qi
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Yilin Yang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Ya Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Nianqing Ren
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Zihan Feng
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Qihao Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| | - Gongli Zong
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji’nan, China
| |
Collapse
|
8
|
Theuretzbacher U. Evaluating the innovative potential of the global antibacterial pipeline. Clin Microbiol Infect 2023:S1198-743X(23)00490-1. [PMID: 37805036 DOI: 10.1016/j.cmi.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Resistance burden varies widely among WHO regions, and the potential impact of new antibiotics differs in addressing the WHO's critical priority pathogens' resistance challenge. OBJECTIVES To analyse the current global clinical pipeline in line with public and global health concerns and define innovation in antibacterial drug discovery. SOURCES Monitoring clinical pipelines since 2006, integrating peer-reviewed MEDLINE publications on clinical development of new antibacterial agents, supplemented with disclosed data from developers. CONTENT The current clinical pipeline is dominated by derivatives of established antibiotic classes, primarily β-lactamase inhibitor combinations in Phase 3 (six of ten which also include two beta-lactams without β-lactamase inhibitor). This pattern extends to Phase 1. Although incremental improvements in susceptibility rates among derivatives benefit patients in advanced health care systems within specific geographical regions, these concepts are not adequate for carbapenem-resistant strains of Enterobacterales (especially Klebsiella and Escherichia coli), Acinetobacter, and Pseudomonas. This limitation arises from the diverse distribution of resistance mechanisms across global regions. Innovation in this context refers to absence of cross-resistance because of class-specific resistance mechanisms. This can most likely be achieved by exploring new chemical classes and new targets/binding sites, and new mode of action. An initial glimpse of progress is evident as innovative agents progressed to Phase 1 clinical trials. However, an influx of more agents advancing to clinical development is essential given the inherent risks associated with novel chemistry and targets. IMPLICATIONS The limited innovation in the global clinical pipeline inadequately serves public and global health interests. The complexities of antibacterial drug discovery, from scientific challenges to financial constraints, underscore the need for collective researcher efforts and public support to drive innovation for patients globally.
Collapse
|
9
|
Yang P, Li Y, Wang X, Chen N, Lu X. Efficacy and safety of ceftazidime-avibactam versus polymyxins in the treatment of carbapenem-resistant Enterobacteriaceae infection: a systematic review and meta-analysis. BMJ Open 2023; 13:e070491. [PMID: 37137556 PMCID: PMC10163451 DOI: 10.1136/bmjopen-2022-070491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVES Carbapenem-resistant Enterobacteriaceae is increasingly recognised as a significant public health concern. Ceftazidime-avibactam (CAZ-AVI) and polymyxins are considered as the last therapeutic options worldwide. This is the first meta-analysis of recently published data to compare the clinical efficacy and safety of CAZ-AVI with polymyxins in the treatment of carbapenem-resistant Enterobacteriaceae infections. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, Embase and the Cochrane Library were systematically searched, for publications in any language, from database inception to February 2023. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies comparing the clinical efficacy and safety of CAZ-AVI with polymyxins were included. Mortality, clinical success, microbiological eradication and nephrotoxicity were assessed as the main outcomes. DATA EXTRACTION AND SYNTHESIS Literature screening, data extraction and the quality evaluation of studies were conducted by two researchers independently, with disagreements resolved by another researcher. The Newcastle-Ottawa Scale was used to assess the bias risk for the included studies. Review Manager V.5.3 was employed for the meta-analysis. RESULTS The meta-analysis included seven retrospective and four prospective cohort studies with 1111 patients enrolled. The CAZ-AVI groups demonstrated a lower 30-day mortality (risk ratio (RR)=0.48, 95% CI of 0.37 to 0.63, I2=10%, p<0.0001) in nine studies with 766 patients; higher clinical success (RR=1.71, 95% CI 1.33 to 2.20, I2=35%, p<0.0001) in four studies with 463 patients; and lower nephrotoxicity in seven studies with 696 patients (RR=0.42, 95% CI 0.23 to 0.77, I2=35%, p<0.05). However, no significant difference in microbiological eradication rates was observed in 249 patients from two studies (RR=1.16, 95% CI 0.97 to 1.39, I2=0, p>0.05). CONCLUSION Available evidence suggested that CAZ-AVI treatment held a dominant position with respect to efficacy and safety compared with polymyxins in carbapenem-resistant Enterobacteriaceae infections. However, the analysis included only observational studies, and high-quality, large-scale, multicentre, double-blind randomised controlled trials are needed to confirm the advantage of CAZ-AVI.
Collapse
Affiliation(s)
- Ping Yang
- Department of Clinical Pharmacy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, People's Republic of China
| | - Yinyan Li
- Department of Clinical Pharmacy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Na Chen
- Department of Clinical Pharmacy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoyang Lu
- Department of Clinical Pharmacy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Genetic Diversity of Virulent Polymyxin-Resistant Klebsiella aerogenes Isolated from Intensive Care Units. Antibiotics (Basel) 2022; 11:antibiotics11081127. [PMID: 36009996 PMCID: PMC9405322 DOI: 10.3390/antibiotics11081127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
This study evaluated the scope and genetic basis of polymyxin-resistant Klebsiella aerogenes in Brazil. Eight polymyxin-resistant and carbapenemase-producing K. aerogenes strains were isolated from patients admitted to the ICU of a tertiary hospital. Bacterial species were identified by automated systems and antimicrobial susceptibility profile was confirmed using broth microdilution. The strains displayed a multidrug resistant profile and were subjected to whole-genome sequencing. Bioinformatic analysis revealed a variety of antimicrobial resistance genes, including the blaKPC-2. No plasmid-mediated colistin resistance gene was identified. Nonetheless, nonsynonymous mutations in mgrB, pmrA, pmrB, and eptA were detected, justifying the colistin resistance phenotype. Virulence genes encoding yersiniabactin, colibactin, and aerobactin were also found, associated with ICEKp4 and ICEKp10, and might be related to the high mortality observed among the patients. In fact, this is the first time ICEKp is identified in K. aerogenes in Brazil. Phylogenetic analysis grouped the strains into two clonal groups, belonging to ST93 and ST16. In summary, the co-existence of antimicrobial resistance and virulence factors is deeply worrying, as it could lead to the emergence of untreatable invasive infections. All these factors reinforce the need for surveillance programs to monitor the evolution and dissemination of multidrug resistant and virulent strains among critically ill patients.
Collapse
|