1
|
Gori A, Brindisi G, Daglia M, del Giudice MM, Dinardo G, Di Minno A, Drago L, Indolfi C, Naso M, Trincianti C, Tondina E, Brunese FP, Ullah H, Varricchio A, Ciprandi G, Zicari AM. Exploring the Role of Lactoferrin in Managing Allergic Airway Diseases among Children: Unrevealing a Potential Breakthrough. Nutrients 2024; 16:1906. [PMID: 38931261 PMCID: PMC11206375 DOI: 10.3390/nu16121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of allergic diseases has dramatically increased among children in recent decades. These conditions significantly impact the quality of life of allergic children and their families. Lactoferrin, a multifunctional glycoprotein found in various biological fluids, is emerging as a promising immunomodulatory agent that can potentially alleviate allergic diseases in children. Lactoferrin's multifaceted properties make it a compelling candidate for managing these conditions. Firstly, lactoferrin exhibits potent anti-inflammatory and antioxidant activities, which can mitigate the chronic inflammation characteristic of allergic diseases. Secondly, its iron-binding capabilities may help regulate the iron balance in allergic children, potentially influencing the severity of their symptoms. Lactoferrin also demonstrates antimicrobial properties, making it beneficial in preventing secondary infections often associated with respiratory allergies. Furthermore, its ability to modulate the immune response and regulate inflammatory pathways suggests its potential as an immune-balancing agent. This review of the current literature emphasises the need for further research to elucidate the precise roles of lactoferrin in allergic diseases. Harnessing the immunomodulatory potential of lactoferrin could provide a novel add-on approach to managing allergic diseases in children, offering hope for improved outcomes and an enhanced quality of life for paediatric patients and their families. As lactoferrin continues to capture the attention of researchers, its properties and diverse applications make it an intriguing subject of study with a rich history and a promising future.
Collapse
Affiliation(s)
- Alessandra Gori
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome, Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy;
- UOC Laboratory of Clinical Medicine, MultiLab Department, IRCCS Multimedica, 20138 Milan, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Chiara Trincianti
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Enrico Tondina
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
| | - Attilio Varricchio
- Department of Otolaryngology, University of Molise, 86100 Campobasso, Italy;
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| |
Collapse
|
2
|
Feng Z, Fan Y, Shi X, Luo X, Xie J, Liu S, Duan C, Wang Q, Ye Y, Yin W. Dysregulation of iron transport-related biomarkers in blood leukocytes is associated with poor prognosis of early trauma. Heliyon 2024; 10:e27000. [PMID: 38463887 PMCID: PMC10923684 DOI: 10.1016/j.heliyon.2024.e27000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Objective The early targeted and effective diagnosis and treatment of severe trauma are crucial for patients' outcomes. Blood leukocytes act as significant effectors during the initial inflammation and activation of innate immunity in trauma. This study aims to identify hub genes related to patients' prognosis in blood leukocytes at the early stages of trauma. Methods The expression profiles of Gene Expression Omnibus (GEO) Series (GSE) 36809 and GSE11375 were downloaded from the GEO database. R software, GraphPad Prism 9.3.1 software, STRING database, and Cytoscape software were used to process the data and identify hub genes in blood leukocytes of early trauma. Results Gene Ontology (GO) analysis showed that the differentially expressed genes (DEGs) of blood leukocytes at the early stages of trauma (0-4 h, 4-8 h, and 8-12 h) were mainly involved in neutrophil activation and neutrophil degranulation, neutrophil activation involved in immune response, neutrophil mediated immunity, lymphocyte differentiation, and cell killing. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs were mainly involved in Osteoclast differentiation and Hematopoietic cell lineage. Sixty-six down-regulated DEGs and 148 up-regulated DEGs were identified and 37 hub genes were confirmed by Molecular Complex Detection (MCODE) of Cytoscape. Among the hub genes, Lipocalin 2 (LCN2), Lactotransferrin (LTF), Olfactomedin 4 (OLFM4), Resistin (RETN), and Transcobalamin 1 (TCN1) were related to prognosis and connected with iron transport closely. LCN2 and LTF were involved in iron transport and had a moderate predictive value for the poor prognosis of trauma patients, and the AUC of LCN2 and LTF was 0.7777 and 0.7843, respectively. Conclusion As iron transport-related hub genes in blood leukocytes, LCN2 and LTF can be used for prognostic prediction of early trauma.
Collapse
Affiliation(s)
- Zhusheng Feng
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Yingnan Fan
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Xiaofei Shi
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Xu Luo
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Shanshou Liu
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Chujun Duan
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Qianmei Wang
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
- Department of Neurosurgery, PLA 921th Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Naidu SAG, Clemens RA, Pressman P, Zaigham M, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum. J Diet Suppl 2020; 19:78-114. [PMID: 33164606 DOI: 10.1080/19390211.2020.1834047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As the COVID-19 pandemic intensified the global health crisis, the containment of SARS-CoV-2 infection in pregnancies, and the inherent risk of vertical transmission of virus from mother-to-fetus (or neonate) poses a major concern. Most COVID-19-Pregnancy patients showed mild to moderate COVID-19 pneumonia with no pregnancy loss and no congenital transmission of the virus; however, an increase in hypoxia-induced preterm deliveries was apparent. Also, the breastmilk of several mothers with COVID-19 tested negative for the virus. Taken together, the natural barrier function during pregnancy and postpartum seems to deter the SARS-CoV-2 transmission from mother-to-child. This clinical observation warrants to explore the maternal-fetal interface and identify the innate defense factors for prevention and control of COVID-19-Pregnancy. Lactoferrin (LF) is a potent antiviral iron-binding protein present in the maternal-fetal interface. In concert with immune co-factors, maternal-LF modulates chemokine release and lymphocyte migration and amplify host defense during pregnancy. LF levels during pregnancy may resolve hypertension via down-regulation of ACE2; consequently, may limit the membrane receptor access to SARS-CoV-2 for cellular entry. Furthermore, an LF-derived peptide (LRPVAA) has been shown to block ACE receptor activity in vitro. LF may also reduce viral docking and entry into host cells and limit the early phase of COVID-19 infection. An in-depth understanding of LF and other soluble mammalian milk-derived innate antiviral factors may provide insights to reduce co-morbidities and vertical transmission of SARS-CoV-2 infection and may lead to the development of effective nutraceutical supplements.
Collapse
Affiliation(s)
| | - Roger A Clemens
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | - Mehreen Zaigham
- Department of Obstetrics & Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, USA.,Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, USA.,Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
4
|
Zupin L, Polesello V, Segat L, Kamada AJ, Kuhn L, Crovella S. Association Between LTF Polymorphism and Risk of HIV-1 Transmission Among Zambian Seropositive Mothers. Curr HIV Res 2019; 16:52-57. [PMID: 29165086 DOI: 10.2174/1570162x15666171120105752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lactoferrin is a member of the innate immune system acting in the first line of defence against pathogens, and it is known for its antibacterial, antifungal and antiviral activity, including HIV-1. Two polymorphisms, T29A and R47K, in the exon 1 region of the LTF gene (encoding for the lactoferrin protein) were previously described as able to influence the lactoferrin antimicrobial function. OBJECTIVES LTF T29A and R47K genetic variants were analysed in a Zambian population to unravel if these polymorphisms could play a role in HIV-1 mother-to-child HIV-1 transmission. METHODS LTF T29A and R47K polymorphisms were genotyped, using allelic specific fluorescent probes and real time PCR, in a population comprising 101 HIV-1 positive mothers and 333 children born to seropositive mothers. RESULTS Maternal LTF T29A A/A and A/G genotypes were found to be associated with decreased risk of HIV-1 MTCT, being more frequent among non-transmitter mothers respect to transmitter mothers. CONCLUSION Our data suggested that maternal LTF genetic background contributes to the susceptibility to HIV-1 transmission from mother to new-borns.
Collapse
Affiliation(s)
- Luisa Zupin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Vania Polesello
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Ludovica Segat
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | | | - Louise Kuhn
- Gertrude H. Sergievsky Center and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Sergio Crovella
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
5
|
Velliyagounder K, Bahdila D, Pawar S, Fine DH. Role of lactoferrin and lactoferrin‐derived peptides in oral and maxillofacial diseases. Oral Dis 2018; 25:652-669. [DOI: 10.1111/odi.12868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/20/2018] [Accepted: 03/17/2018] [Indexed: 12/30/2022]
Affiliation(s)
- K Velliyagounder
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - D Bahdila
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - S Pawar
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - DH Fine
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| |
Collapse
|
6
|
Pinho RCM, Pimentel LB, Bandeira FAF, Dias RSAM, Cimões R. Levels of serum sclerostin, metabolic parameters, and periodontitis in -postmenopausal women with diabetes. SPECIAL CARE IN DENTISTRY 2017; 37:282-289. [PMID: 29194725 DOI: 10.1111/scd.12250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease defined by hyperglycemia, which is associated with periodontal disease and exerts an effect on bone metabolism. The aim of this study was to determine serum levels of sclerostin in postmenopausal women with diabetes and determine a possible association with periodontal disease. Sixty-one postmenopausal women (32 with diabetes and 29 without diabetes) were evaluated. Blood was collected for biochemical analysis and the determination of serum sclerostin. The participants were also submitted to a clinical examination for the evaluation of periodontal status. A total of 75.4% of the volunteers had periodontal disease and levels serum sclerostin were altered in 48.7% of the patients with diabetes. In the diabetic population, mean levels of LDL (p = 0.035) and urea (p = 0.032) were higher in the patients without periodontal disease and the plaque index was higher in those with periodontal disease (p = 0.039). The prevalence of periodontal disease and the levels serum sclerostin were high in the postmenopausal women analyzed, but the data do not allow the determination of whether periodontal disease is related to high levels of this peptide.
Collapse
|