1
|
Li GY, Yang L, Xiao KR, Song QS, Stanley D, Wei SJ, Zhu JY. Characterization and expression profiling of serine protease inhibitors in the yellow mealworm Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21948. [PMID: 35749627 DOI: 10.1002/arch.21948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Serine protease inhibitors (SPIs) act in diverse biological processes in insects such as immunity, development, and digestion by preventing the unwanted proteolysis. So far, the repertoire of genes encoding SPIs has been identified from few insect species. In this study, 62 SPI genes were identified from the genome of the yellow mealworm, Tenebrio molitor. According to their modes of action, they were classified into three families, serpin (26), canonical SPI (31), and α-macroglobulins (A2M) (5). These SPIs feature eight domains including serpin, Kazal, TIL, Kunitz, WAP, Antistasin, pacifastin, and A2M. In total, 39 SPIs contain a single SPI domain, while the others encode at least two inhibitor units. Based on the amino acids in the cleaved reactive sites, the abilities of these SPIs to inhibit trypsin, chymotrypsin, or elastase-like enzymes are predicted. The expression profiling based on the RNA-seq data showed that these genes displayed stage-specific expression patterns during development, suggesting to us their significance in development. Some of the SPI genes were exclusively expressed in particular tissues such as hemocyte, fat body, gut, ovary, and testis, which may be involved in biological processes specific to the indicated tissues. These findings provide necessary information for further investigation of insect SPIs.
Collapse
Affiliation(s)
- Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
2
|
Identification of Novel Toxin Genes from the Stinging Nettle Caterpillar Parasa lepida (Cramer, 1799): Insights into the Evolution of Lepidoptera Toxins. INSECTS 2021; 12:insects12050396. [PMID: 33946702 PMCID: PMC8145965 DOI: 10.3390/insects12050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Many caterpillar species can produce toxins that cause harmful reactions to humans, varying from mild irritation to death. Currently, there is very limited knowledge about caterpillar toxin diversity, because only a few species have been investigated. We used the transcriptome technique to identify candidate toxin genes from the nettle caterpillar Parasa lepida (Cramer, 1799). It is a common pest of oil palm, coconut, and mango in South and South-East Asia, which can cause severe pain and allergic responses to those in contact with them. We reported 168 candidate toxin genes. Most of them are members of the toxin genes families commonly recruited in animal venoms such as serine protease and serine protease inhibitors. However, we identified 21 novel genes encoding knottin-like peptides expressed at a high level in the transcriptome. Their predicted 3D structures are similar to neurotoxins in scorpion and tarantula. Our study suggests that P. lepida venom contains diverse toxin proteins that potentially cause allergic reactions and pain. This study sheds light on the hidden diversity of toxin proteins in caterpillar lineage, which could be future fruitful new drug sources. Abstract Many animal species can produce venom for defense, predation, and competition. The venom usually contains diverse peptide and protein toxins, including neurotoxins, proteolytic enzymes, protease inhibitors, and allergens. Some drugs for cancer, neurological disorders, and analgesics were developed based on animal toxin structures and functions. Several caterpillar species possess venoms that cause varying effects on humans both locally and systemically. However, toxins from only a few species have been investigated, limiting the full understanding of the Lepidoptera toxin diversity and evolution. We used the RNA-seq technique to identify toxin genes from the stinging nettle caterpillar, Parasa lepida (Cramer, 1799). We constructed a transcriptome from caterpillar urticating hairs and reported 34,968 unique transcripts. Using our toxin gene annotation pipeline, we identified 168 candidate toxin genes, including protease inhibitors, proteolytic enzymes, and allergens. The 21 P. lepida novel Knottin-like peptides, which do not show sequence similarity to any known peptide, have predicted 3D structures similar to tarantula, scorpion, and cone snail neurotoxins. We highlighted the importance of convergent evolution in the Lepidoptera toxin evolution and the possible mechanisms. This study opens a new path to understanding the hidden diversity of Lepidoptera toxins, which could be a fruitful source for developing new drugs.
Collapse
|
3
|
Wang Y, Wang B, Liu M, Jiang K, Wang M, Wang L. Characterization and function analysis of a Kazal-type serine proteinase inhibitor in the red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103871. [PMID: 32946920 DOI: 10.1016/j.dci.2020.103871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Kazal-type serine proteinase inhibitors (KPIs) function in physiological and immunological processes requiring proteinase action. In the present study, the first Cherax quadricarinatus KPI gene (designated CqKPI) was identified and characterized. The open reading frame of CqKPI contains 405 nucleotides and encodes a protein of 134 amino acids. CqKPI has two Kazal domains comprising 44 amino acid residues with the conserved amino acid sequence C-X3-C-X7-C-X6-Y-X3-C-X6-C-X12-C. Each Kazal domain has six conserved cysteine residues, which can form a structural conformation of three pairs of disulfide bonds stabilizing the Kazal domain. CqKPI exhibited high similarity with previously identified KPIs from crayfish hemocytes. The results of tissue distribution showed that CqKPI had the highest expression level in hemocytes, and this was in agreement with phylogenic relationships. Recombinant CqKPI (rCqKPI) was heterologously expressed in Escherichia coli and purified for further study. The proteinase inhibition assays suggested that rCqKPI could potently inhibit elastase and weakly inhibit trypsin, subtilisin A, and proteinase K, but not α-chymotrypsin. It can firmly bind to Bacillus hwajinpoensis, Staphylococcus aureus, and Vibrio parahaemolyticus, with weak binding to Candida albicans. In addition, CqKPI inhibited bacterial secretory proteinase activity and inhibited the growth of B. hwajinpoensis and C. albicans. These data suggest that CqKPI might be involved in anti-bacterial immunity, acting as an inhibitor of the proteinase cascade in the resistance to invasion of pathogens.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baojie Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mei Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Keyong Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; The Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of China, Sanya, 572024, China; Center for Marine Molecular Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Lei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266400, China.
| |
Collapse
|
4
|
Gu QJ, Zhou SM, Zhou YN, Huang JH, Shi M, Chen XX. A trypsin inhibitor-like protein secreted by Cotesia vestalis teratocytes inhibits hemolymph prophenoloxidase activation of Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:41-48. [PMID: 31026441 DOI: 10.1016/j.jinsphys.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 05/26/2023]
Abstract
To establish successful infections, endoparasitoid wasps must develop strategies to evade immune responses of the host. Here, we identified and characterized a teratocytes-expressed gene encoding a trypsin inhibitor-like protein containing a cysteine-rich domain from Cotesia vestalis, CvT-TIL. CvT-TIL had a high expression level during the later developmental stage of teratocytes and was secreted into host hemolymph. Further experiments showed CvT-TIL strongly suppressed the prophenoloxidase activation of host hemolymph in a dose-dependent manner by interacting with PxPAP3 of PO cascade. Our results not only provide evidence for an inhibition between CvT-TIL gene and the host's melanization activity, but also expand our knowledge about the mechanisms by which parasitoids regulate humoral immunity of the host.
Collapse
Affiliation(s)
- Qi-Juan Gu
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| | - Shi-Min Zhou
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| | - Yue-Nan Zhou
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| | - Xue-Xin Chen
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China; State Key Lab of Rice Biology, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China
| |
Collapse
|
5
|
Verdes A, Simpson D, Holford M. Are Fireworms Venomous? Evidence for the Convergent Evolution of Toxin Homologs in Three Species of Fireworms (Annelida, Amphinomidae). Genome Biol Evol 2018; 10:249-268. [PMID: 29293976 PMCID: PMC5778601 DOI: 10.1093/gbe/evx279] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Amphinomids, more commonly known as fireworms, are a basal lineage of marine annelids characterized by the presence of defensive dorsal calcareous chaetae, which break off upon contact. It has long been hypothesized that amphinomids are venomous and use the chaetae to inject a toxic substance. However, studies investigating fireworm venom from a morphological or molecular perspective are scarce and no venom gland has been identified to date, nor any toxin characterized at the molecular level. To investigate this question, we analyzed the transcriptomes of three species of fireworms-Eurythoe complanata, Hermodice carunculata, and Paramphinome jeffreysii-following a venomics approach to identify putative venom compounds. Our venomics pipeline involved de novo transcriptome assembly, open reading frame, and signal sequence prediction, followed by three different homology search strategies: BLAST, HMMER sequence, and HMMER domain. Following this pipeline, we identified 34 clusters of orthologous genes, representing 13 known toxin classes that have been repeatedly recruited into animal venoms. Specifically, the three species share a similar toxin profile with C-type lectins, peptidases, metalloproteinases, spider toxins, and CAP proteins found among the most highly expressed toxin homologs. Despite their great diversity, the putative toxins identified are predominantly involved in three major biological processes: hemostasis, inflammatory response, and allergic reactions, all of which are commonly disrupted after fireworm stings. Although the putative fireworm toxins identified here need to be further validated, our results strongly suggest that fireworms are venomous animals that use a complex mixture of toxins for defense against predators.
Collapse
Affiliation(s)
- Aida Verdes
- Department of Chemistry, Hunter College Belfer Research Center, and The Graduate Center, Program in Biology, Chemistry and Biochemistry, City University of New York
- Department of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
- Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | - Danny Simpson
- Department of Population Health, New York University School of Medicine
| | - Mandë Holford
- Department of Chemistry, Hunter College Belfer Research Center, and The Graduate Center, Program in Biology, Chemistry and Biochemistry, City University of New York
- Department of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
- Department of Biochemistry, Weill Cornell Medical College, Cornell University
| |
Collapse
|
6
|
Lin H, Lin X, Zhu J, Yu XQ, Xia X, Yao F, Yang G, You M. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BMC Genomics 2017; 18:162. [PMID: 28196471 PMCID: PMC5309989 DOI: 10.1186/s12864-017-3583-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/10/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Serine protease inhibitors (SPIs) have been found in all living organisms and play significant roles in digestion, development and innate immunity. In this study, we present a genome-wide identification and expression profiling of SPI genes in the diamondback moth, Plutella xylostella (L.), a major pest of cruciferous crops with global distribution and broad resistance to different types of insecticides. RESULTS A total of 61 potential SPI genes were identified in the P. xylostella genome, and these SPIs were classified into serpins, canonical inhibitors, and alpha-2-macroglobulins based on their modes of action. Sequence alignments showed that amino acid residues in the hinge region of known inhibitory serpins from other insect species were conserved in most P. xylostella serpins, suggesting that these P. xylostella serpins may be functionally active. Phylogenetic analysis confirmed that P. xylostella inhibitory serpins were clustered with known inhibitory serpins from six other insect species. More interestingly, nine serpins were highly similar to the orthologues in Manduca sexta which have been demonstrated to participate in regulating the prophenoloxidase activation cascade, an important innate immune response in insects. Of the 61 P.xylostella SPI genes, 33 were canonical SPIs containing seven types of inhibitor domains, including Kunitz, Kazal, TIL, amfpi, Antistasin, WAP and Pacifastin. Moreover, some SPIs contained additional non-inhibitor domains, including spondin_N, reeler, and other modules, which may be involved in protein-protein interactions. Gene expression profiling showed gene-differential, stage- and sex-specific expression patterns of SPIs, suggesting that SPIs may be involved in multiple physiological processes in P. xylostella. CONCLUSIONS This is the most comprehensive investigation so far on SPI genes in P. xylostella. The characterized features and expression patterns of P. xylostella SPIs indicate that the SPI family genes may be involved in innate immunity of this species. Our findings provide valuable information for uncovering further biological roles of SPI genes in P. xylostella.
Collapse
Affiliation(s)
- Hailan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Xijian Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Jiwei Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,School of Biological Sciences, University of Missouri, Kansas City, MO, 64110-2499, USA
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Fengluan Yao
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China.
| |
Collapse
|