1
|
Martinek R, Lózsa R, Póti Á, Németh E, Várady G, Szabó P, Szüts D. Comprehensive investigation of the mutagenic potential of six pesticides classified by IARC as probably carcinogenic to humans. CHEMOSPHERE 2024; 362:142700. [PMID: 38936485 DOI: 10.1016/j.chemosphere.2024.142700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Pesticides are significant environmental pollutants, and many of them possess mutagenic potential, which is closely linked to carcinogenesis. Here we tested the mutagenicity of all six pesticides classified probably carcinogenic (Group 2A) by the International Agency of Research on Cancer: 4,4'-DDT, captafol, dieldrin, diazinon, glyphosate and malathion. Whole genome sequencing of TK6 human lymphoblastoid cell clones following 30-day exposure at subtoxic concentrations revealed a clear mutagenic effect of treatment with captafol or malathion when added at 200 nM or 100 μM initial concentrations, respectively. Each pesticide induced a specific base substitution mutational signature: captafol increased C to A mutations primarily, while malathion induced mostly C to T mutations. 4,4'-DDT, dieldrin, diazinon and glyphosate were not mutagenic. Whereas captafol induced chromosomal instability, H2A.X phosphorylation and cell cycle arrest in G2/M phase, all indicating DNA damage, malathion did not induce DNA damage markers or cell cycle alterations despite its mutagenic effect. Hypersensitivity of REV1 and XPA mutant DT40 chicken cell lines suggests that captafol induces DNA adducts that are bypassed by translesion DNA synthesis and are targets for nucleotide excision repair. The experimentally identified mutational signatures of captafol and malathion could shed light on the mechanism of action of these compounds. The signatures are potentially suitable for detecting past exposure in tumour samples, but the reanalysis of large cancer genome databases did not reveal any evidence of captafol or malathion exposure.
Collapse
Affiliation(s)
- Regina Martinek
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary; Doctoral School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| | - Rita Lózsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Ádám Póti
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - György Várady
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Pál Szabó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest, H-1117, Hungary.
| |
Collapse
|
2
|
Sherif M, Makame KR, Östlundh L, Paulo MS, Nemmar A, Ali BR, Al-Rifai RH, Nagy K, Ádám B. Genotoxicity of Occupational Pesticide Exposures among Agricultural Workers in Arab Countries: A Systematic Review and Meta-Analysis. TOXICS 2023; 11:663. [PMID: 37624167 PMCID: PMC10458041 DOI: 10.3390/toxics11080663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Exposure to pesticides in Arab countries is a significant public health concern due to extensive agricultural activity and pesticide use. This systematic review aimed to evaluate the genotoxic effects of agricultural pesticide exposure in the region, identify research gaps, and assess methodological limitations. Following the PRISMA guidelines, a comprehensive search yielded five relevant studies conducted in Egypt, Syria, and Jordan. Various genotoxicity assays were employed, revealing a higher level of DNA damage in exposed compared to non-exposed individuals. Farmers exposed to pesticides exhibited a significantly higher occurrence of chromosomal translocation (t(14;18)), micronuclei, and chromosomal aberrations. However, only two studies assessed cytotoxicity indirectly. The studies predominantly focused on male participants, with variations in sample size and pesticide types. The lack of detailed exposure data necessitates cautious interpretation. This review underscores the need for further research on the genotoxicity of occupational pesticide exposure in the Middle East. Future studies should adopt robust study designs, collect biological and environmental samples, conduct repeated sampling, analyze seasonal variations, and encompass diverse study sites associated with specific crop groups.
Collapse
Affiliation(s)
- Moustafa Sherif
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.S.); (R.H.A.-R.)
| | - Khadija Ramadhan Makame
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Linda Östlundh
- University Library, Örebro University, SE-702 81 Örebro, Sweden;
| | - Marilia Silva Paulo
- IPH, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Rami H. Al-Rifai
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.S.); (R.H.A.-R.)
| | - Károly Nagy
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Balázs Ádám
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.S.); (R.H.A.-R.)
| |
Collapse
|
3
|
Gholami M, Mosakhani Z, Barazandeh A, Karyab H. Adsorption of organophosphorus malathion pesticide from aqueous solutions using nano-polypropylene-titanium dioxide composite: Equilibrium, kinetics and Optimization studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:35-45. [PMID: 37159732 PMCID: PMC10163181 DOI: 10.1007/s40201-022-00826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/09/2022] [Indexed: 05/11/2023]
Abstract
Purpose The purpose of this study was to investigate the applicability of the adsorption process of a persistent organophosphorus pesticide (malathion) from aqueous solutions by using titanium dioxide- polypropylene nanocomposite (Nano-PP/TiO2). Methods The structure of Nano-PP/TiO2 was specified by field emission scanning electron microscopes (FE-SEM), fourier-transform infrared spectroscopy (FTIR), brunauer-emmett-teller (BET), and transmission electron microscope (TEM) technologies. Response surface methodology (RSM) was applied to optimize the adsorption of malathion onto Nano-PP/TiO2 and investigates the effects of various experimental parameters including contact time (5-60 min), adsorbent dose (0.5-4 g/l) and initial malathion concentration (5-20000 mg/l). Extraction and analysis of malathion were performed by dispersive liquid-liquid microextraction (DLLME) coupled with a gas chromatography, coupled with flame ionization detector (GC/FID). Results The isotherms obtained for Nano-PP/TiO2 revealed that it was a mesoporous material with a total pore volume of 2.06 cm3/g, average pore diameters of 2.48 nm and a surface area of 51.52 m2/g. The obtained results showed that the Langmuir type 2 was the best-fitted model for delegating the equilibrium data of isotherm studies with adsorption capacity of 7.43 mg/g, and pseudo-second-order type 1 for kinetic model. The optimized conditions to achieve the maximum removal (96%) were at a malathion concentration of 7.13 mg/L, contact time of 52 min and adsorbent dose of 0.5 g/L. Conclusion Due to its efficient and appropriate function in adsorbing malathion from aqueous solutions, it was revealed that Nano-PP/TiO2 can be used as an effective adsorbent as well as in further studies.
Collapse
Affiliation(s)
- Mehrnoosh Gholami
- Atlas Ab Gostar-E-Sarina Company, Biomedical Technology Incubator Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zohre Mosakhani
- Reference Laboratory, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Asma Barazandeh
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hamid Karyab
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
4
|
Manzi A, De-Carli BP, Roggero A, Ferreira De Moraes LL, Annunciato I, Novo Belchor M, Lima Neto DFD, Antonio De Oliveira M, Hikari Toyama M. Theoretical evaluation of the malathion and its chemical derivatives interaction with cytosolic phospholipase A2 from zebrafish. CHEMOSPHERE 2023; 311:136984. [PMID: 36306964 DOI: 10.1016/j.chemosphere.2022.136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Cytosolic phospholipase A2 (cPLA2) belongs to a large family of proteins and plays a crucial role in the regulation of arachidonic acid metabolism and inflammation cascade in zebrafish (Danio rerio). This enzyme with a molecular weight of 85 kDa, has two distinct domains. One is the regulatory and calcium-dependent (Ca2+) domain called C2, the other is the catalytic α/β hydrolase Ca2+-independent domain, where serine and aspartic acid catalytic dyad residues are present. We investigated the interaction of malathion and their organophosphate metabolites in the cPLA2 using in silico tools. Molecular docking results showed hydrophobic interactions with the paraoxon and catalytic site residue (Ser 223). Malathion increases intracellular Ca2+ due to endoplasmic reticulum influx which in turn activities phospholipase A2 and arachidonic acid release. Molecular docking and homology modelling of proteins and ligands could be a complementary tool for ecotoxicology and environment pollution assessment.
Collapse
Affiliation(s)
- Agatha Manzi
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil.
| | - Bruno Paes De-Carli
- BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil; Universidade Paulista UNIP, Santos, SP, Brazil
| | - Airam Roggero
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| | - Laila Lucyane Ferreira De Moraes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| | - Isabelly Annunciato
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| | - Mariana Novo Belchor
- BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| | | | | | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil; BIOMOLPEP, Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, 11330-900, São Paulo, Brazil
| |
Collapse
|