1
|
Pestalotiopsis Diversity: Species, Dispositions, Secondary Metabolites, and Bioactivities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228088. [PMID: 36432188 PMCID: PMC9695833 DOI: 10.3390/molecules27228088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Pestalotiopsis species have gained attention thanks to their structurally complex and biologically active secondary metabolites. In past decades, several new secondary metabolites were isolated and identified. Their bioactivities were tested, including anticancer, antifungal, antibacterial, and nematicidal activity. Since the previous review published in 2014, new secondary metabolites were isolated and identified from Pestalotiopsis species and unidentified strains. This review gathered published articles from 2014 to 2021 and focused on 239 new secondary metabolites and their bioactivities. To date, 384 Pestalotiopsis species have been discovered in diverse ecological habitats, with the majority of them unstudied. Some may contain secondary metabolites with unique bioactivities that might benefit pharmacology.
Collapse
|
2
|
Sadıkoğulları BC, Şenel P, Çini N, Faysal AA, Odabaşoğlu M, Özdemir AD, Gölcü A. An Overview of Natural and Synthetic Phthalides Involved in Cancer Studies: Past, Present, and Future. ChemistrySelect 2022. [DOI: 10.1002/slct.202202004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bleda Can Sadıkoğulları
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Pelin Şenel
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Nejla Çini
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Abdullah Al Faysal
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Mustafa Odabaşoğlu
- Karadeniz Technical University Faculty of Sciences and Letters Department of Chemistry Trabzon 61080 Turkey
| | - Ayşe Daut Özdemir
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Ayşegül Gölcü
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| |
Collapse
|
3
|
Zhang WF, Ma JK, Zhang XX, Qian YN, Xu J. Immunosuppressive Polyketides from the Mangrove Endophytic Fungus Pestalotiopsis sp. HHL-14. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Nie JH, Huang JX, Wu QR, Qin XM, Li ZY. Uncovering the anti-proliferation mechanism and bioactive compounds in red kidney bean coat against B16-F10 melanoma cells by metabolomics and network pharmacology analysis. Food Funct 2019; 10:912-924. [DOI: 10.1039/c8fo01738g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, coat (RKBC) and kernel (RKBK) extracts of red kidney bean were prepared, and their chemical compositions and potential anti-cancer activity against B16-F10 cells were evaluated.
Collapse
Affiliation(s)
- Jia-Hui Nie
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- College of Chemistry and Chemical Engineering
| | | | - Qing-Rong Wu
- Shanxi Nutranovo Bio-Technology Co. Ltd
- Taiyuan 030006
- China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| | - Zhen-Yu Li
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
5
|
Lee JY, Kim GJ, Choi JK, Choi YA, Jeong NH, Park PH, Choi H, Kim SH. 4-(Hydroxymethyl)catechol Extracted From Fungi in Marine Sponges Attenuates Rheumatoid Arthritis by Inhibiting PI3K/Akt/NF-κB Signaling. Front Pharmacol 2018; 9:726. [PMID: 30079020 PMCID: PMC6062625 DOI: 10.3389/fphar.2018.00726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease specific to synovial joints; it causes joint damage and other systemic abnormalities, thereby leading to physical disability and early mortality. Marine sponge-derived fungi, Pestalotiopsis sp., secrete immunosuppressive compounds in the culture broth. In the present study, we isolated 4-(hydroxymethyl)catechol (4-HMC) from these fungal species, and evaluated its anti-RA effects using a murine collagen-induced arthritis model and tumor necrosis factor-α-stimulated human RA synovial fibroblasts. Oral 4-HMC administration decreased the clinical arthritis score, paw thickness, histologic and radiologic changes, and serum IgG1 and IgG2a levels. It prevented the proliferation of helper T (Th) 1/Th17 CD4+ lymphocytes isolated from inguinal lymph nodes, thereby reducing inflammatory cytokine production in CIA mice. It decreased the expression of inflammatory mediators, including cytokines and matrix metalloproteinases (MMPs), both in vitro and in vivo. We observed that 4-HMC suppresses Th immune responses and MMP expression to inhibit inflammatory cytokine production in human RA synovial fibroblasts by modulating the PI3K/Akt/NF-κB pathway. These results verify the anti-RA potential of 4-HMC.
Collapse
Affiliation(s)
- Jong Y Lee
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Geum J Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jin K Choi
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea.,Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Young-Ae Choi
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Na-Hee Jeong
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, CMRI, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
Xie W, Zhang Z, Song L, Huang C, Guo Z, Hu X, Bi S, Yu R. Cordyceps militaris Fraction induces apoptosis and G2/M Arrest via c-Jun N-Terminal kinase signaling pathway in oral squamous carcinoma KB Cells. Pharmacogn Mag 2018; 14:116-123. [PMID: 29576711 PMCID: PMC5858231 DOI: 10.4103/pm.pm_63_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Cordyceps militaris fraction (CMF) has been shown to possess in vitro antitumor activity against human chronic myeloid leukemia K562 cells in our previous research. Materials and Methods: The in vitro inhibitory activities of CMF on the growth of KB cells were evaluated by viability assay. The apoptotic and cell cycle influences of CMF were detected by 4′,6-diamidino-2-phenylindole staining and flow cytometry assay. The expression of different apoptosis-associated proteins and cell cycle regulatory proteins was examined by Western blot assay. The nuclear localization of c-Jun was observed by fluorescence staining. Objective: The objective of this study was to investigate the antiproliferative effect of CMF as well as the mechanism underlying the apoptosis and cell cycle arrest it induces in KB cells. Results: CMF suppressed KB cells’ proliferation in a dose- and time-dependent manner. Flow cytometric analysis indicated that CMF induced G2/M cell cycle arrest and apoptosis. Western blot analysis revealed that CMF induced caspase-3, caspase-9, and PARP cleavages, and increased the Bax/Bcl-2 ratio. CMF also led to increased expression of p21, decreased expression of cyclin B1, mitotic phosphatase cdc25c, and mitotic kinase cdc2, as well as unchanged expression of p53. In addition, CMF stimulated c-Jun N-terminal kinases (JNK) protein phosphorylations, resulting in upregulated expression of c-Jun and nuclear localization of c-Jun. Pretreatment with JNK inhibitor SP600125 suppressed CMF-induced apoptosis and G2/M arrest. Conclusions: CMF is capable of modulating c-Jun caspase and Bcl-2 family proteins through JNK-dependent apoptosis, which results in G2/M phase arrest in KB cells. CMF could be developed as a promising candidate for the new antitumor agents. SUMMARY CMF exhibited strong anticancer activity against oral squamous carcinoma KB cells CMF inhibited KB cells’ proliferation via induction of apoptosis and G2/M cell cycle arrest CMF activated JNK signaling pathway and promoted the nuclear localization of c-Jun CMF regulated the apoptosis- and cell cycle-related proteins in a manner dependent on JNK/c-Jun pathway.
Abbreviations used: CMF: Cordyceps militaris fraction; OSCC: Oral squamous cell carcinoma; JNK: c-Jun N-terminal kinase.
Collapse
Affiliation(s)
- Wangshi Xie
- Department of Pharmacology, College of Pharmacy, Jinan University, China
| | - Zhang Zhang
- Department of Pharmacology, College of Pharmacy, Jinan University, China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, China
| | - Chunhua Huang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| | - Zhongyi Guo
- Department of Pharmacology, College of Pharmacy, Jinan University, China
| | - Xianjing Hu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| | - Sixue Bi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| | - Rongmin Yu
- Department of Pharmacology, College of Pharmacy, Jinan University, China.,Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 104 2017; 104:127-246. [DOI: 10.1007/978-3-319-45618-8_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
El Sayed OH, Asker MMS, Swelim MA, Abbas IH, Attwa AI, El Awady ME. Production of hydroxy marilone C as a bioactive compound from Streptomyces badius. J Genet Eng Biotechnol 2016; 14:161-168. [PMID: 30647610 PMCID: PMC6299901 DOI: 10.1016/j.jgeb.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/09/2016] [Accepted: 04/21/2016] [Indexed: 12/03/2022]
Abstract
Hydroxy marilone C is a bioactive metabolite produced from the culture broth of Streptomyces badius isolated from Egyptian soil. Hydroxy marilone C was purified and fractionated by a silica gel column with a gradient mobile phase dichloromethane (DCM):methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many procedures such as infrared (IR), nuclear magnetic resonance (NMR), Mass spectroscopy (MS) and UV spectroscopy for elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549) and human breast adenocarcinoma cell line (MCF-7) and antiviral activities; showed that the maximum antioxidant activity was 78.8% at 3 mg/ml after 90 min. and the IC50 value against DPPH radical found about 1.5 mg/ml after 60 min. Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells was 443 μg/ml and 147.9 μg/ml, respectively, while for detection of antiviral activity using Madin-Darby canine kidney (MDCK) cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1 μg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50) was 33.25% for 80 μg/ml. These results indicated that the hydroxy marilone C has potential antitumor and antiviral activities.
Collapse
Affiliation(s)
- Osama H El Sayed
- Department of Microbial Biotechnology, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohsen M S Asker
- Department of Microbial Biotechnology, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Mahmoud A Swelim
- Botany Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ibrahim H Abbas
- Botany Department, Faculty of Science, Benha University, Benha, Egypt
| | - Aziza I Attwa
- Department of Microbial Biotechnology, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed E El Awady
- Department of Microbial Biotechnology, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
9
|
Shen T, Liu XB, Zhang W. Calocephalactone: A New Phthalide Derivative from the Root ofLeontopodium calocephalum. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201500280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Hsieh SL, Chen CT, Wang JJ, Kuo YH, Li CC, Hsieh LC, Wu CC. Sedanolide induces autophagy through the PI3K, p53 and NF-κB signaling pathways in human liver cancer cells. Int J Oncol 2015; 47:2240-6. [PMID: 26500073 DOI: 10.3892/ijo.2015.3206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/26/2015] [Indexed: 11/05/2022] Open
Abstract
Sedanolide (SN), a phthalide-like compound from celery seed oil, possesses antioxidant effects. However, the effect of SN on cell death in human liver cancer cells has yet to be determined. In this study, cell viability determination, monodansylcadaverine (MDC) fluorescent staining and immunoblot analysis were performed to determine autophagy induction and autophagy-induced protein expression changes via molecular examination after human liver cancer (J5) cells were treated with SN. Our studies demonstrate that SN suppressed J5 cell viability by inducing autophagy. Phosphoinositide 3-kinase (PI3K)-I, mammalian target of rapamycin (mTOR) and Akt protein levels decreased, whereas PI3K-III, LC3-II and Beclin-1 protein levels increased following SN treatment in J5 cells. In addition, SN treatment upregulated nuclear p53 and damage-regulated autophagy modulator (DRAM) and downregulated cytosolic p53 and Tp53-induced glycolysis and apoptosis regulator (TIGAR) expression in J5 cells. Furthermore, the cytosolic phosphorylation of inhibitor of kappa B (IκB) and nuclear p65 and the DNA-binding activity of NF-κB increased after SN treatment. These results suggest that SN induces J5 cell autophagy by regulating PI3K, p53 and NF-κB autophagy-associated signaling pathways in J5 cells.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- Department of Seafood Sciences, National Kaohsiung Marine University, Kaohsiung 81143, Taiwan, R.O.C
| | - Chi-Tsai Chen
- Department of Restaurant and Hospitality Management, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan, R.O.C
| | - Jyh-Jye Wang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83111, Taiwan, R.O.C
| | - Yu-Hao Kuo
- Department of Seafood Sciences, National Kaohsiung Marine University, Kaohsiung 81143, Taiwan, R.O.C
| | - Chien-Chun Li
- School of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Lan-Chi Hsieh
- Department of Dietetics Kaohsiung Municipal United Hospital, Kaohsiung 80457, Taiwan, R.O.C
| | - Chih-Chung Wu
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan, R.O.C
| |
Collapse
|
11
|
Bailon-Moscoso N, González-Arévalo G, Velásquez-Rojas G, Malagon O, Vidari G, Zentella-Dehesa A, Ratovitski EA, Ostrosky-Wegman P. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation. PLoS One 2015; 10:e0136527. [PMID: 26309132 PMCID: PMC4550445 DOI: 10.1371/journal.pone.0136527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/04/2015] [Indexed: 12/01/2022] Open
Abstract
Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.
Collapse
Affiliation(s)
- Natalia Bailon-Moscoso
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | | | - Omar Malagon
- Departamento de Química Aplicada, Universidad Técnica Particular de Loja, Loja, Ecuador
- Dipartimento di Chimica Organica, University of Pavia, Pavia, Italy
| | - Giovanni Vidari
- Dipartimento di Chimica Organica, University of Pavia, Pavia, Italy
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición“Salvador Zubirán”, México, D. F., Mexico
| | - Edward A. Ratovitski
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
- Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- * E-mail:
| |
Collapse
|
12
|
|