1
|
Üremiş N, Üremiş MM. Oxidative/Nitrosative Stress, Apoptosis, and Redox Signaling: Key Players in Neurodegenerative Diseases. J Biochem Mol Toxicol 2025; 39:e70133. [PMID: 39799559 PMCID: PMC11725306 DOI: 10.1002/jbt.70133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression. The heterogeneity of genetic and environmental factors involved in the process of neurodegeneration makes current treatment methods inadequate. However, the existence of common molecular mechanisms in the pathogenesis of these diseases may allow the development of new targeted therapeutic strategies. Oxidative and nitrosative stress damages membrane components by accumulating ROS and RNS and disrupting redox balance. This process results in the induction of apoptosis, which is important in the pathogenesis of neurodegenerative diseases through oxidative stress. Studies conducted using postmortem human samples, animal models, and cell cultures have demonstrated that oxidative stress, nitrosative stress, and apoptosis are crucial factors in the development of diseases such as Alzheimer's, Parkinson's, Multiple Sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. The excessive production of reactive oxygen and nitrogen species, elevated levels of free radicals, heightened mitochondrial stress, disturbances in energy metabolism, and the oxidation and nitrosylation of cellular macromolecules are recognized as triggers for neuronal cell death. Challenges in managing and treating neurodegenerative diseases require a better understanding of this field at the molecular level. Therefore, this review elaborates on the molecular mechanisms by which oxidative and nitrosative stress are involved in neuronal apoptosis.
Collapse
Affiliation(s)
- Nuray Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| | - Muhammed Mehdi Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| |
Collapse
|
2
|
Gautam S, Latif S, Kang YS. Effect of Various Pathological Conditions on Nitric Oxide Level and L-Citrulline Uptake in Motor Neuron-Like (NSC-34) Cell Lines. Biomol Ther (Seoul) 2024; 32:154-161. [PMID: 38148559 PMCID: PMC10762273 DOI: 10.4062/biomolther.2023.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 12/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive paralysis. L-Citrulline is a non-essential neutral amino acid produced by L-arginine via nitric oxide synthase (NOS). According to previous studies, the pathogenesis of ALS entails glutamate toxicity, oxidative stress, protein misfolding, and neurofilament disruption. In addition, L-citrulline prevents neuronal cell death in brain ischemia; therefore, we investigated the change in the transport of L-citrulline under various pathological conditions in a cell line model of ALS. We examined the uptake of [14C]L-citrulline in wild-type (hSOD1wt/WT) and mutant NSC-34/ SOD1G93A (MT) cell lines. The cell viability was determined via MTT assay. A transport study was performed to determine the uptake of [14C]L-citrulline. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to determine the expression levels of rat large neutral amino acid transported 1 (rLAT1) in ALS cell lines. Nitric oxide (NO) assay was performed using Griess reagent. L-Citrulline had a restorative effect on glutamate induced cell death, and increased [14C]L-citrulline uptake and mRNA levels of the large neutral amino acid transporter (LAT1) in the glutamate-treated ALS disease model (MT). NO levels increased significantly when MT cells were pretreated with glutamate for 24 h and restored by co-treatment with L-citrulline. Co-treatment of MT cells with L-arginine, an NO donor, increased NO levels. NSC-34 cells exposed to high glucose conditions showed a significant increase in [14C]L-citrulline uptake and LAT1 mRNA expression levels, which were restored to normal levels upon co-treatment with unlabeled L-citrulline. In contrast, exposure of the MT cell line to tumor necrosis factor alpha, lipopolysaccharides, and hypertonic condition decreased the uptake significantly which was restored to the normal level by co-treating with unlabeled L-citrulline. L-Citrulline can restore NO levels and cellular uptake in ALS-affected cells with glutamate cytotoxicity, pro-inflammatory cytokines, or other pathological states, suggesting that L-citrulline supplementation in ALS may play a key role in providing neuroprotection.
Collapse
Affiliation(s)
- Shashi Gautam
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Sana Latif
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Young-Sook Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| |
Collapse
|
3
|
Nikolaidis A, Kramer R, Ostojic S. Nitric Oxide: The Missing Factor in COVID-19 Severity? Med Sci (Basel) 2021; 10:3. [PMID: 35076566 PMCID: PMC8788438 DOI: 10.3390/medsci10010003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious respiratory and vascular disease that continues to spread among people around the world, mutating into new strains with increased transmission rates, such as the delta variant. The scientific community is struggling to discover the link between negative COVID-19 outcomes in patients with preexisting conditions, as well as identify the cause of the negative clinical patient outcomes (patients who need medical attention, including hospitalization) in what seems like a widespread range of COVID-19 symptoms that manifest atypically to any preexisting respiratory tract infectious diseases known so far. Having successfully developed a nutritional formulation intervention based on nitrate, a nitric oxide precursor, the authors hypothesis is that both the comorbidities associated with negative clinical patient outcomes and symptoms associated with COVID-19 sickness are linked to the depletion of a simple molecule: nitric oxide.
Collapse
Affiliation(s)
| | - Ron Kramer
- ThermoLife International, Phoenix, AZ 85048, USA;
| | - Sergej Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, 21102 Novi Sad, Serbia;
| |
Collapse
|
4
|
N-Methyl-D-aspartate Glutamate Receptor Modulates Cardiovascular and Neuroendocrine Responses Evoked by Hemorrhagic Shock in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1156031. [PMID: 34423030 PMCID: PMC8378978 DOI: 10.1155/2021/1156031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Here, we report the participation of N-methyl-D-aspartate (NMDA) glutamate receptor in the mediation of cardiovascular and circulating vasopressin responses evoked by a hemorrhagic stimulus. In addition, once NMDA receptor activation is a prominent mechanism involved in nitric oxide (NO) synthesis in the brain, we investigated whether control of hemorrhagic shock by NMDA glutamate receptor was followed by changes in NO synthesis in brain supramedullary structures involved in cardiovascular and neuroendocrine control. Thus, we observed that intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK801, 0.3 mg/kg) delayed and reduced the magnitude of hemorrhage-induced hypotension. Besides, hemorrhage induced a tachycardia response in the posthemorrhage period (i.e., recovery period) in control animals, and systemic treatment with MK801 caused a bradycardia response during hemorrhagic shock. Hemorrhagic stimulus increased plasma vasopressin levels during the recovery period and NMDA receptor antagonism increased concentration of this hormone during both the hemorrhage and postbleeding periods in relation to control animals. Moreover, hemorrhagic shock caused a decrease in NOx levels in the paraventricular nucleus of the hypothalamus (PVN), amygdala, bed nucleus of the stria terminalis (BNST), and ventral periaqueductal gray matter (vPAG). Nevertheless, treatment with MK801 did not affect these effects. Taken together, these results indicate that the NMDA glutamate receptor is involved in the hemorrhagic shock by inhibiting circulating vasopressin release. Our data also suggest a role of the NMDA receptor in tachycardia, but not in the decreased NO synthesis in the brain evoked by hemorrhage.
Collapse
|
5
|
Wojno O, Czarzasta K, Puchalska L, Kowalczyk M, Cudnoch-Jedrzejewska A. Central interaction between the apelinergic and vasopressinergic systems in the regulation of the haemodynamic parameters in rats maintained on a high-fat diet. Clin Exp Pharmacol Physiol 2020; 47:1902-1911. [PMID: 32687615 DOI: 10.1111/1440-1681.13381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022]
Abstract
A high-fat diet can affect the central activity of the apelinergic and vasopressinergic systems, which can have a significant impact on cardiovascular regulation. The aim of the study was to investigate the role of the central interaction between apelin and vasopressin in the regulation of the cardiovascular system in Sprague Dawley rats maintained on a normal-fat diet (NFD) or on a high-fat diet (HFD). The animals were instrumented with a cannula implanted into the left cerebral ventricle for intracerebroventricular (ICV) infusions of saline (0.9% NaCl), apelin-13 (APLN-13), V1a receptor antagonist (V1aRANT) APJ receptor antagonist (F13A), vasopressin (AVP); and with a catheter placed within the femoral artery for mean arterial blood pressure and heart rate monitoring. Blood, the hypothalamus and the medulla oblongata were collected for biochemical analysis. The hypertensive effect of APLN-13 was blocked by a prior ICV infusion of V1aRANT, only in the NFD rats. However, the hypertensive effect of AVP was blocked by the prior ICV infusion of F13A in both the NFD and HFD rats. A HFD caused an increase in the protein level of APJ and V1a receptors, both in the hypothalamus and the medulla oblongata. This study confirms the presence of an interaction between both peptides in the central regulation of the cardiovascular system in rats on a NFD or a HFD.
Collapse
Affiliation(s)
- Olena Wojno
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Liana Puchalska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Kowalczyk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Coletti R, de Lima JBM, Vechiato FMV, de Oliveira FL, Debarba LK, Almeida-Pereira G, Elias LLK, Antunes-Rodrigues J. Nitric oxide acutely modulates hypothalamic and neurohypophyseal carbon monoxide and hydrogen sulphide production to control vasopressin, oxytocin and atrial natriuretic peptide release in rats. J Neuroendocrinol 2019; 31:e12686. [PMID: 30633838 DOI: 10.1111/jne.12686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) negatively modulates the secretion of vasopressin (AVP), oxytocin (OT) and atrial natriuretic peptide (ANP) induced by the increase in extracellular osmolality, whereas carbon monoxide (CO) and hydrogen sulphide (H2 S) act to potentiate it; however, little information is available for the osmotic challenge model about whether and how such gaseous systems modulate each other. Therefore, using an acute ex vivo model of hypothalamic and neurohypophyseal explants (obtained from male 6/7-week-old Wistar rats) under conditions of extracellular iso- and hypertonicity, we determined the effects of NO (600 μmol L-1 sodium nitroprusside), CO (100 μmol L-1 tricarbonylchloro[glycinato]ruthenium [II]) and H2 S (10 mmol L-1 sodium sulphide) donors and nitric oxide synthase (NOS) (300 μmol L-1 Nω -methyl-l-arginine [LNMMA]), haeme oxygenase (HO) (200 μmol L-1 Zn(II) deuteroporphyrin IX 2,4-bis-ethylene glycol [ZnDPBG]) and cystathionine β-synthase (CBS) (100 μmol L-1 aminooxyacetate [AOA]) inhibitors on the release of hypothalamic ANP and hypothalamic and neurohypophyseal AVP and OT, as well as on the activities of NOS, HO and CBS. LNMMA reversed hyperosmolality-induced NOS activity, and enhanced hormonal release by the hypothalamus and neurohypophysis, in addition to increasing CBS and hypothalamic HO activity. AOA decreased hypothalamic and neurohypophyseal CBS activity and hormonal release, whereas ZnDPBG inhibited HO activity and hypothalamic hormone release; however, in both cases, AOA did not modulate NOS and HO activity and ZnDPBG did not affect NOS and CBS activity. Thus, our data indicate that, although endogenous CO and H2 S positively modulate AVP, OT and ANP release, only NO plays a concomitant role of modulator of hormonal release and CBS activity in the hypothalamus and neurohypophysis and that of HO activity in the hypothalamus during an acute osmotic stimulus, which suggests that NO is a key gaseous controller of the neuroendocrine system.
Collapse
Affiliation(s)
- Ricardo Coletti
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Lucas Kniess Debarba
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gislaine Almeida-Pereira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Patisaul HB. Endocrine Disruption of Vasopressin Systems and Related Behaviors. Front Endocrinol (Lausanne) 2017; 8:134. [PMID: 28674520 PMCID: PMC5475378 DOI: 10.3389/fendo.2017.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals that interfere with the organizational or activational effects of hormones. Although the vast majority of the EDC literature focuses on steroid hormone signaling related impacts, growing evidence from a myriad of species reveals that the nonapeptide hormones vasopressin (AVP) and oxytocin (OT) may also be EDC targets. EDCs shown to alter pathways and behaviors coordinated by AVP and/or OT include the plastics component bisphenol A (BPA), the soy phytoestrogen genistein (GEN), and various flame retardants. Many effects are sex specific and likely involve action at nuclear estrogen receptors. Effects include the elimination or reversal of well-characterized sexually dimorphic aspects of the AVP system, including innervation of the lateral septum and other brain regions critical for social and other non-reproductive behaviors. Disruption of magnocellular AVP function has also been reported in rats, suggesting possible effects on hemodynamics and cardiovascular function.
Collapse
Affiliation(s)
- Heather B. Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, NC State University, Raleigh, NC, United States
- *Correspondence: Heather B. Patisaul,
| |
Collapse
|