1
|
Zeng ML, Xu W. A Narrative Review of the Published Pre-Clinical Evaluations: Multiple Effects of Arachidonic Acid, its Metabolic Enzymes and Metabolites in Epilepsy. Mol Neurobiol 2025; 62:288-303. [PMID: 38842673 DOI: 10.1007/s12035-024-04274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Arachidonic acid (AA), an important polyunsaturated fatty acid in the brain, is hydrolyzed by a direct action of phospholipase A2 (PLA2) or through the combined action of phospholipase C and diacylglycerol lipase, and released into the cytoplasm. Various derivatives of AA can be synthesized mainly through the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (P450) enzyme pathways. AA and its metabolic enzymes and metabolites play important roles in a variety of neurophysiological activities. The abnormal metabolites and their catalytic enzymes in the AA cascade are related to the pathogenesis of various central nervous system (CNS) diseases, including epilepsy. Here, we systematically reviewed literatures in PubMed about the latest randomized controlled trials, animal studies and clinical studies concerning the known features of AA, its metabolic enzymes and metabolites, and their roles in epilepsy. The exclusion criteria include non-original studies and articles not in English.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Wei Xu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
3
|
Kajita Y, Fukuda Y, Kawamatsu R, Oyanagi T, Mushiake H. Pentylenetetrazole kindling induces dynamic changes in GAD65 expression in hippocampal somatostatin interneurons. Pharmacol Biochem Behav 2024; 239:173755. [PMID: 38527654 DOI: 10.1016/j.pbb.2024.173755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION One of the mechanisms of epileptgenesis is impairment of inhibitory neural circuits. Several studies have compared neural changes among subtypes of gamma-aminobutyric acid-related (GABAergic) neurons after acquired epileptic seizure. However, it is unclear that GABAergic neural modifications that occur during acquisition process of epileptic seizure. METHODS Male rats were injected with pentylenetetrazole (PTZ kindling: n = 30) or saline (control: n = 15) every other day to observe the development of epileptic seizure stages. Two time points were identified: the point at which seizures were most difficult to induce, and the point at which seizures were most easy to induce. The expression of GABAergic neuron-related proteins in the hippocampus was immunohistochemically compared among GABAergic subtypes at each of these time points. RESULTS Bimodal changes in seizure stages were observed in response to PTZ kindling. The increase of seizure stage was transiently suppressed after 8 or 10 injections, and then progressed again by the 16th injection. Based on these results, we defined 10 injections as a short-term injection period during which seizures are less likely to occur, and 20 injections as a long-term injection period during which continuous seizures are likely to occur. The immunohistochemical analysis showed that hippocampal glutamic acid decarboxylase 65 (GAD65) expression was increased after short-term kindling but unchanged after long-term kindling. Increased GAD65 expression was limited to somatostatin-positive (SOM+) cells among several GABAergic subtypes. By contrast, GAD, GABA, GABAAR α1, GABABR1, and VGAT cells showed no change following short- or long-term PTZ kindling. CONCLUSION PTZ kindling induces bimodal changes in the epileptic seizure stage. Seizure stage is transiently suppressed after short-term PTZ injection with GAD65 upregulation in SOM+ cells. The seizure stage is progressed again after long-term PTZ injection with GAD65 reduction to baseline level.
Collapse
Affiliation(s)
- Yuki Kajita
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Yuki Fukuda
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Riho Kawamatsu
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takanori Oyanagi
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
4
|
Kim JH, Lee H, Jeong D, Lee JH, Kwon HS, Song WJ, Cho YS, Kim YJ, Shin YW, Kim TB. The Risk of Neuropsychiatric Adverse Events With Use of Leukotriene Receptor Antagonists in Patients With Asthma: Analysis of Korea's National Health Insurance Sharing Service Database. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3690-3699.e7. [PMID: 37660732 DOI: 10.1016/j.jaip.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Montelukast, a selective leukotriene receptor antagonist, is a commonly prescribed allergy medication but its potential association with neuropsychiatric adverse events is concerning. OBJECTIVE To analyze Korea's National Health Insurance System claims records to identify the risk of neuropsychiatric adverse events in patients with asthma treated with montelukast. METHODS This retrospective population-based study analyzed the National Health Insurance claims records of the entire Korean population between 2008 and 2015. We compared the risk of neuropsychiatric adverse events among patients with asthma using inhaled corticosteroids and/or long-acting β2-agonists with montelukast or pranlukast and those not using leukotriene receptor antagonists (control group). RESULTS There was no increased risk of the composite outcome of all measured neuropsychiatric adverse events in patients with asthma who were prescribed montelukast or pranlukast compared with those who were not. However, montelukast use was associated with an increased risk of hallucinations (inverse probability treatment weighting hazard ratio, 1.45; 95% CI, 1.07-1.96) and attention problems (inverse probability treatment weighting hazard ratio, 1.24; 95% CI, 1.01-1.52). Significant negative hazards for disorientation, anxiety, stress reactions, and somatic symptoms were observed in the montelukast group. When grouped by sex, the risk of hallucinations and attention problems was higher in men prescribed montelukast compared with the controls. CONCLUSIONS We did not observe an increase in all neuropsychiatric adverse events in the leukotriene receptor antagonist-treated group; however, an increased risk of hallucinations and attention problems was observed in those taking montelukast, regardless of the medication administration period.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Department of Internal Medicine, Korean Armed Forces Capital Hospital, Seongnam, Korea
| | - Hyesung Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea; Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Korea
| | - Dongyeon Jeong
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ye-Jee Kim
- Department of Preventive Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Yong-Wook Shin
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Llanos MA, Enrique N, Esteban-López V, Scioli-Montoto S, Sánchez-Benito D, Ruiz ME, Milesi V, López DE, Talevi A, Martín P, Gavernet L. A Combined Ligand- and Structure-Based Virtual Screening To Identify Novel NaV1.2 Blockers: In Vitro Patch Clamp Validation and In Vivo Anticonvulsant Activity. J Chem Inf Model 2023; 63:7083-7096. [PMID: 37917937 DOI: 10.1021/acs.jcim.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures that arise from abnormal electrical activity in the brain. Voltage-gated sodium channels (NaVs), responsible for the initiation and propagation of action potentials in neurons, play a critical role in the pathogenesis of epilepsy. This study sought to discover potential anticonvulsant compounds that interact with NaVs, specifically, the brain subtype hNaV1.2. A ligand-based QSAR model and a docking model were constructed, validated, and applied in a parallel virtual screening over the DrugBank database. Montelukast, Novobiocin, and Cinnarizine were selected for in vitro testing, using the patch-clamp technique, and all of them proved to inhibit hNaV1.2 channels heterologously expressed in HEK293 cells. Two hits were evaluated in the GASH/Sal model of audiogenic seizures and demonstrated promising activity, reducing the severity of sound-induced seizures at the doses tested. The combination of ligand- and structure-based models presents a valuable approach for identifying potential NaV inhibitors. These findings may provide a basis for further research into the development of new antiseizure drugs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Manuel A Llanos
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Nicolás Enrique
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Vega Esteban-López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Sebastian Scioli-Montoto
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - David Sánchez-Benito
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - María E Ruiz
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Veronica Milesi
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Pedro Martín
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| |
Collapse
|
6
|
Uczay M, Pflüger P, Picada JN, de Oliveira JDM, da SilvaTorres IL, Medeiros HR, Vendruscolo MH, von Poser G, Pereira P. Geniposide and asperuloside alter the COX-2 and GluN2B receptor expression after pilocarpine-induced seizures in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:951-962. [PMID: 36536207 DOI: 10.1007/s00210-022-02367-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Asperuloside (ASP) and geniposide (GP) are iridoids that have shown various biological properties, such as reduction of inflammation, oxidative stress, and neuroprotection. The aim of this study was to investigate the mechanism of action of ASP and GP through the experimental model of pilocarpine-induced seizures. Mice were treated daily with saline, valproic acid (VPA), GP (5, 25, or 50 mg/kg), or ASP (20 or 40 mg/kg) for 8 days. Pilocarpine (PILO) treatment was administered after the last day of treatment, and the epileptic behavior was recorded for 1 h and analyzed by an adapted scale. Afterward, the hippocampus and blood samples were collected for western blot analyses, ELISA and comet assay, and bone marrow to the micronucleus test. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA receptor, pGluR1, an AMPA receptor, and the enzyme GAD-1 by western blot and the cytokine TNF-α by ELISA. The treatments with GP and ASP were capable to decrease the latency to the first seizure, although they did not change the latency to status epilepticus (SE). ASP demonstrated a genotoxic potential analyzed by comet assay; however, the micronuclei frequency was not increased in the bone marrow. The GP and ASP treatments were capable to reduce COX-2 and GluN2B receptor expression after PILO exposure. This study suggests that GP and ASP have a protective effect on PILO-induced seizures, decreasing GluN2B receptor and COX-2 expression.
Collapse
Affiliation(s)
- Mariana Uczay
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | | | | | - Iraci Lucena da SilvaTorres
- Laboratory of Pain Pharmacology and Neuromodulation, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | - Maria Helena Vendruscolo
- Laboratory of Pharmacognosy, College of Pharmacy, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, 90050-170, Brazil
| | - Gilsane von Poser
- Laboratory of Pharmacognosy, College of Pharmacy, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, 90050-170, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
7
|
Maurer-Morelli CV, de Vasconcellos JF, Bruxel EM, Rocha CS, do Canto AM, Tedeschi H, Yasuda CL, Cendes F, Lopes-Cendes I. Gene expression profile suggests different mechanisms underlying sporadic and familial mesial temporal lobe epilepsy. Exp Biol Med (Maywood) 2022; 247:2233-2250. [PMID: 36259630 PMCID: PMC9899983 DOI: 10.1177/15353702221126666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) have hippocampal sclerosis on the postoperative histopathological examination. Although most patients with MTLE do not refer to a family history of the disease, familial forms of MTLE have been reported. We studied surgical specimens from patients with MTLE who had epilepsy surgery for medically intractable seizures. We assessed and compared gene expression profiles of the tissue lesion found in patients with familial MTLE (n = 3) and sporadic MTLE (n = 5). In addition, we used data from control hippocampi obtained from a public database (n = 7). We obtained expression profiles using the Human Genome U133 Plus 2.0 (Affymetrix) microarray platform. Overall, the molecular profile identified in familial MTLE differed from that in sporadic MTLE. In the tissue of patients with familial MTLE, we found an over-representation of the biological pathways related to protein response, mRNA processing, and synaptic plasticity and function. In sporadic MTLE, the gene expression profile suggests that the inflammatory response is highly activated. In addition, we found enrichment of gene sets involved in inflammatory cytokines and mediators and chemokine receptor pathways in both groups. However, in sporadic MTLE, we also found enrichment of epidermal growth factor signaling, prostaglandin synthesis and regulation, and microglia pathogen phagocytosis pathways. Furthermore, based on the gene expression signatures, we identified different potential compounds to treat patients with familial and sporadic MTLE. To our knowledge, this is the first study assessing the mRNA profile in surgical tissue obtained from patients with familial MTLE and comparing it with sporadic MTLE. Our results clearly show that, despite phenotypic similarities, both forms of MTLE present distinct molecular signatures, thus suggesting different underlying molecular mechanisms that may require distinct therapeutic approaches.
Collapse
Affiliation(s)
- Claudia V Maurer-Morelli
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Jaira F de Vasconcellos
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Department of Biology, James Madison
University, Harrisonburg, VA 22807, USA
| | - Estela M Bruxel
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Cristiane S Rocha
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Amanda M do Canto
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Helder Tedeschi
- Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Clarissa L Yasuda
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Iscia Lopes-Cendes.
| |
Collapse
|
8
|
Llanos MA, Enrique N, Sbaraglini ML, Garofalo FM, Talevi A, Gavernet L, Martín P. Structure-Based Virtual Screening Identifies Novobiocin, Montelukast, and Cinnarizine as TRPV1 Modulators with Anticonvulsant Activity In Vivo. J Chem Inf Model 2022; 62:3008-3022. [PMID: 35696534 DOI: 10.1021/acs.jcim.2c00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) receptor is a nonselective cation channel, known to be involved in the regulation of many important physiological and pathological processes. In the last few years, it has been proposed as a promising target to develop novel anticonvulsant compounds. However, thermoregulatory effects associated with the channel inhibition have hampered the path for TRPV1 antagonists to become marketed drugs. In this regard, we conducted a structure-based virtual screening campaign to find potential TRPV1 modulators among approved drugs, which are known to be safe and thermally neutral. To this end, different docking models were developed and validated by assessing their pose and score prediction powers. Novobiocin, montelukast, and cinnarizine were selected from the screening as promising candidates for experimental testing and all of them exhibited nanomolar inhibitory activity. Moreover, the in vivo profiles showed promising results in at least one of the three models of seizures tested.
Collapse
Affiliation(s)
- Manuel A Llanos
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| | - María L Sbaraglini
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Federico M Garofalo
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Alan Talevi
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Luciana Gavernet
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| |
Collapse
|
9
|
Tesfaye BA, Hailu HG, Zewdie KA, Ayza MA, Berhe DF. Montelukast: The New Therapeutic Option for the Treatment of Epilepsy. J Exp Pharmacol 2021; 13:23-31. [PMID: 33505173 PMCID: PMC7829127 DOI: 10.2147/jep.s277720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no definitive cure for epilepsy. The available medications relieve symptoms and reduce seizure attacks. The major challenge with the available antiepileptic medication is safety and affordability. The repurposing of montelukast for epilepsy can be an alternative medication with a better safety profile. Montelukast is a leukotriene receptor antagonist that binds to the cysteinyl leukotrienes (CysLT) receptors used in the treatment of bronchial asthma and seasonal allergies. Emerging evidence suggests that montelukast's anti-inflammatory effect can help to maintain BBB integrity. The drug has also neuroprotective and anti-oxidative activities to reduce seizure incidence and epilepsy. The present review summarizes the neuropharmacological actions of montelukast in epilepsy with an emphasis on the recent findings associated with CysLT and cell-specific effects.
Collapse
Affiliation(s)
- Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Haftom Gebregergs Hailu
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
10
|
Kwan Cheung KA, Mitchell MD, Heussler HS. Cannabidiol and Neurodevelopmental Disorders in Children. Front Psychiatry 2021; 12:643442. [PMID: 34093265 PMCID: PMC8175856 DOI: 10.3389/fpsyt.2021.643442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders (such as autism spectrum disorder) have broad health implications for children, with no definitive cure for the vast majority of them. However, recently medicinal cannabis has been successfully trialled as a treatment to manage many of the patients' symptoms and improve quality of life. The cannabinoid cannabidiol, in particular, has been reported to be safe and well-tolerated with a plethora of anticonvulsant, anxiolytic and anti-inflammatory properties. Lately, the current consensus is that the endocannabinoid system is a crucial factor in neural development and health; research has found evidence that there are a multitude of signalling pathways involving neurotransmitters and the endocannabinoid system by which cannabinoids could potentially exert their therapeutic effects. A better understanding of the cannabinoids' mechanisms of action should lead to improved treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keith A Kwan Cheung
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen S Heussler
- Centre for Clinical Trials in Rare Neurodevelopmental Disorders, Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia.,Centre for Children's Health Research, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Chen F, Ghosh A, Lin J, Zhang C, Pan Y, Thakur A, Singh K, Hong H, Tang S. 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer's disease. Brain Behav Immun 2020; 88:844-855. [PMID: 32222525 DOI: 10.1016/j.bbi.2020.03.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
5-lipoxygenase (ALOX5) is an enzyme involved in arachidonic acid (AA) metabolism, a metabolic pathway in which cysteinyl leukotrienes (CysLTs) are the resultant metabolites. Both ALOX5 and CysLTs are clinically significant in a number of inflammatory diseases, such as in asthma and allergic rhinitis, and drugs antagonizing the effect of these molecules have long been successfully used to counter these diseases. Interestingly, recent advances in 'neuroinflammation' research has led to the discovery of several novel inflammatory pathways regulating many cerebral pathologies, including the ALOX5 pathway. By means of pharmacological and genetic studies, both ALOX5 and CysLTs receptors have been shown to be involved in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative/neurological diseases, such as in Parkinson's disease, multiple sclerosis, and epilepsy. In both transgenic and sporadic models of AD, it has been shown that the levels of ALOX5/CysLTs are elevated, and that genetic/pharmacological interventions of these molecules can alleviate AD-related behavioral and pathological conditions. Clinical relevance of these molecules has also been found in AD brain samples. In this review, we aim to summarize such important findings on the role of ALOX5/CysLTs in AD pathophysiology, from both the cellular and the molecular aspects, and also discuss the potential of their blockers as possible therapeutic choices to curb AD-related conditions.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Arijit Ghosh
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Jingran Lin
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Chunteng Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China; Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China
| | - Yining Pan
- Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kunal Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Hao Hong
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China.
| | - Susu Tang
- Department of Pharmacology and Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Vondrakova K, Novotny P, Kubova H, Posusta A, Boron J, Faberova V, Fabene PF, Burchfiel J, Tsenov G. Electrographic seizures induced by activation of ET A and ET B receptors following intrahippocampal infusion of endothelin-1 in immature rats occur by different mechanisms. Exp Neurol 2020; 328:113255. [PMID: 32084451 DOI: 10.1016/j.expneurol.2020.113255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 11/24/2022]
Abstract
We have demonstrated previously that activation of either the ETA or ETB receptor can induce acute electrographic seizures following the intrahippocampal infusion of endothelin-1 (ET-1) in immature (P12) rats. We also demonstrated that activation of the ETA receptor is associated with marked focal ischemia, while activation of the ETB receptor is not. Exploring the mechanisms underlying seizures induced by these two ET-1 receptor interactions can potentially provide insight into how focal ischemia in immature animals produces seizures and whether ischemiarelated seizures differ from seizures not associated with ischemia. To explore these seizure mechanisms we used microdialysis to determine biomarkers associated with seizures in P12 rats following the intrahippocampal infusion of two different agents: (1) ET-1, which activates both the ETA and ETB receptors and causes focal ischemia and (2) Ala-ET-1, which selectively activates only the ETB receptor and does not cause ischemia. Our results show that seizures associated with combined ETA and ETB receptor activation (and ischemia) have a different temporal distribution and microdialysis profile from seizures associated with ETB activation alone (and without ischemia). Seizures with combined activation peak within the first hour after infusion and the microdialysis profile is characterized by a significant increase in the ratio of glutamic acid to GABA. By contrast, seizures with activation of only the ETB receptor peak in the second hour after infusion and microdialysis shows a significant increase in the ratio of leukotriene B4 to prostaglandin E2. These findings suggest that ischemia-related seizures in immature animals involve an imbalance of excitation and inhibition, while non-ischemiarelated seizures involve an inflammatory process resulting from an excess of leukotrienes.
Collapse
Affiliation(s)
- Katerina Vondrakova
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; Faculty of Science, Charles university in Prague, Albertov 6, 12843 Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic
| | - Petr Novotny
- Essence Line, Plzeňská 130/221, 150 00 Prague 5, Czech Republic
| | - Hana Kubova
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Antonin Posusta
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Jan Boron
- Essence Line, Plzeňská 130/221, 150 00 Prague 5, Czech Republic
| | - Veronika Faberova
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; Veterinary Clinic Well-vet, 14100 Prague, Czech Republic
| | - Paolo Francesco Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy; INN, Istituto Nazionale delle Neuroscienze, Verona, Italy
| | - James Burchfiel
- Strong Epilepsy Center, Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 673, Rochester, NY 14642, USA
| | - Grygoriy Tsenov
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
13
|
Kwan Cheung KA, Peiris H, Wallace G, Holland OJ, Mitchell MD. The Interplay between the Endocannabinoid System, Epilepsy and Cannabinoids. Int J Mol Sci 2019; 20:E6079. [PMID: 31810321 PMCID: PMC6929011 DOI: 10.3390/ijms20236079] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/25/2022] Open
Abstract
Epilepsy is a neurological disorder that affects approximately 50 million people worldwide. There is currently no definitive epilepsy cure. However, in recent years, medicinal cannabis has been successfully trialed as an effective treatment for managing epileptic symptoms, but whose mechanisms of action are largely unknown. Lately, there has been a focus on neuroinflammation as an important factor in the pathology of many epileptic disorders. In this literature review, we consider the links that have been identified between epilepsy, neuroinflammation, the endocannabinoid system (ECS), and how cannabinoids may be potent alternatives to more conventional pharmacological therapies. We review the research that demonstrates how the ECS can contribute to neuroinflammation, and could therefore be modulated by cannabinoids to potentially reduce the incidence and severity of seizures. In particular, the cannabinoid cannabidiol has been reported to have anti-convulsant and anti-inflammatory properties, and it shows promise for epilepsy treatment. There are a multitude of signaling pathways that involve endocannabinoids, eicosanoids, and associated receptors by which cannabinoids could potentially exert their therapeutic effects. Further research is needed to better characterize these pathways, and consequently improve the application and regulation of medicinal cannabis.
Collapse
Affiliation(s)
- Keith A. Kwan Cheung
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
| | - Hassendrini Peiris
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
| | - Geoffrey Wallace
- Children’s Health Queensland (CHQ) and University of Queensland (UQ), Centre for Children’s Health Research, 62 Graham Street, South Brisbane, Queensland 4101, Australia;
| | - Olivia J. Holland
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
- School of Medical Science, Griffith University, 1 Parklands Dr, Southport, Queensland 4215, Australia
| | - Murray D. Mitchell
- Institute of Health and Biomedical Innovation (IHBI), Faculty of Health, Queensland University of Technology (QUT), Centre for Children’s Health Research (CCHR), 62 Graham Street, South Brisbane, Queensland 4101, Australia; (K.A.K.C.); (H.P.); (O.J.H.)
| |
Collapse
|
14
|
Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl Leukotrienes and Their Receptors: Emerging Therapeutic Targets in Central Nervous System Disorders. CNS Neurosci Ther 2016; 22:943-951. [PMID: 27542570 DOI: 10.1111/cns.12596] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Cysteinyl leukotrienes are a group of the inflammatory lipid molecules well known as mediators of inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic asthma, allergic rhinitis, and others, recent advances in the field of biomedical research highlighted the role of these inflammatory mediators in a broader range of diseases such as in the inflammation associated with the central nervous system (CNS) disorders, vascular inflammation (atherosclerotic), and in cancer. Among the CNS diseases, they, along with their synthesis precursor enzyme 5-lipoxygenase and their receptors, have been shown to be associated with brain injury, Multiple sclerosis, Alzheimer's disease, Parkinson's disease, brain ischemia, epilepsy, and others. However, a lot more remains elusive as the research in these areas is emerging and only a little has been discovered. Herein, through this review, we first provided a general up-to-date information on the synthesis pathway and the receptors for the molecules. Next, we summarized the current findings on their role in the brain disorders, with an insight given to the future perspectives.
Collapse
Affiliation(s)
- Arijit Ghosh
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Hong
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|