1
|
Bhadange R, Gaikwad AB. Repurposing the familiar: Future treatment options against chronic kidney disease. J Pharm Pharmacol 2025:rgaf002. [PMID: 39832316 DOI: 10.1093/jpp/rgaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Chronic kidney disease (CKD) is a serious health issue with rising morbidity and mortality rates. Despite advances in understanding its pathophysiology, effective therapeutic options are limited, necessitating innovative treatment approaches. Also, current frontline treatments that are available against CKD are not uniformly effective and often come with significant side effects. Therefore, identifying new therapeutic targets or improving existing treatments for CKD is crucial. Drug repurposing is a promising strategy in the drug discovery process that involves screening existing approved drugs for new therapeutic applications. KEY FINDINGS This review discusses the pharmacological mechanisms and clinical evidence that support the efficacy of these repurposed drugs. Various drugs classes such as inodilators, endothelin-1 type A (ET-1A) receptor antagonists, bisphosphonates, mineralocorticoid receptor (MR) antagonists, DNA demethylating agents, nuclear factor erythroid 2-related factor 2 (NRF2) activators, P2X7 inhibitors, autophagy modulators, hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) are discussed that could remarkably contribute against CKD. SUMMARY The review critically examines the potential for repurposing well-established drugs to slow the progression of CKD and enhance patient outcomes. This review emphasizes the importance of a multidisciplinary approach in advancing the field of drug repurposing, ultimately paving the way for innovative and effective therapies for patients suffering from CKD.
Collapse
Affiliation(s)
- Rohan Bhadange
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, 333031, Rajasthan, India
| |
Collapse
|
2
|
Martínez-Díaz I, Martos N, Llorens-Cebrià C, Álvarez FJ, Bedard PW, Vergara A, Jacobs-Cachá C, Soler MJ. Endothelin Receptor Antagonists in Kidney Disease. Int J Mol Sci 2023; 24:3427. [PMID: 36834836 PMCID: PMC9965540 DOI: 10.3390/ijms24043427] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Endothelin (ET) is found to be increased in kidney disease secondary to hyperglycaemia, hypertension, acidosis, and the presence of insulin or proinflammatory cytokines. In this context, ET, via the endothelin receptor type A (ETA) activation, causes sustained vasoconstriction of the afferent arterioles that produces deleterious effects such as hyperfiltration, podocyte damage, proteinuria and, eventually, GFR decline. Therefore, endothelin receptor antagonists (ERAs) have been proposed as a therapeutic strategy to reduce proteinuria and slow the progression of kidney disease. Preclinical and clinical evidence has revealed that the administration of ERAs reduces kidney fibrosis, inflammation and proteinuria. Currently, the efficacy of many ERAs to treat kidney disease is being tested in randomized controlled trials; however, some of these, such as avosentan and atrasentan, were not commercialized due to the adverse events related to their use. Therefore, to take advantage of the protective properties of the ERAs, the use of ETA receptor-specific antagonists and/or combining them with sodium-glucose cotransporter 2 inhibitors (SGLT2i) has been proposed to prevent oedemas, the main ERAs-related deleterious effect. The use of a dual angiotensin-II type 1/endothelin receptor blocker (sparsentan) is also being evaluated to treat kidney disease. Here, we reviewed the main ERAs developed and the preclinical and clinical evidence of their kidney-protective effects. Additionally, we provided an overview of new strategies that have been proposed to integrate ERAs in kidney disease treatment.
Collapse
Affiliation(s)
- Irene Martínez-Díaz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Nerea Martos
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | | | | | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Maria José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
3
|
2-Methoxyestradiol TPGS Micelles Attenuate Cyclosporine A-Induced Nephrotoxicity in Rats through Inhibition of TGF-β1 and p-ERK1/2 Axis. Antioxidants (Basel) 2022; 11:antiox11081499. [PMID: 36009218 PMCID: PMC9405159 DOI: 10.3390/antiox11081499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
The immunosuppressant cyclosporine A (CSA) has been linked to serious renal toxic effects. Although 2-methoxyestradiol (2ME) possesses a wide range of pharmacological abilities, it suffers poor bioavailability after oral administration. The purpose of this study was to evaluate the potential of 2ME loaded D-ɑ-tocopheryl polyethylene glycol succinate (TPGS) micelles to prevent CSA-induced nephrotoxicity in rats. A 2ME-TPGS was prepared and showed particle size of 44.3 ± 3.5 nm with good entrapment efficiency and spherical structures. Male Wistar rats were divided into 5 groups, namely: Control, Vehicle, CSA, CSA + 2ME-Raw, and CSA + 2ME-Nano. CSA was injected daily at a SC dose of 20 mg/kg. Both 2ME-Raw and 2ME-Nano were given daily at oral doses of 5 mg/kg. Treatments continued for three successive weeks. 2ME-TPGS exerted significant protective effects against CSA nephrotoxicity. This was evidenced in ameliorating deterioration of renal functions, attenuation of pathological changes in kidney tissues, exerting significant anti-fibrotic, antioxidant, and anti-inflammatory effects together with significant anti-apoptotic effects. Western blot analyses showed both 2ME-Raw and 2ME-Nano significantly inhibited protein expression of TGF-β1 and phospho-ERK (p-ERK). It was observed that 2ME-TPGS, in almost all experiments, exerted superior protective effects as compared with 2ME-Raw. In conclusion, 2ME loaded in a TPGS nanocarrier possesses significant protective activities against CSA-induced kidney injury in rats. This is attributable to 2ME anti-fibrotic, antioxidant, anti-inflammatory, and anti-apoptotic activities which are mediated at least partly by inhibition of TGF-β1/p-ERK axis.
Collapse
|
4
|
Lymperopoulos A, Suster MS, Borges JI. Cardiovascular GPCR regulation by regulator of G protein signaling proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:145-166. [PMID: 36357075 DOI: 10.1016/bs.pmbts.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiovascular homeostasis across all vertebrate species, including humans. In terms of normal cellular function, termination of GPCR signaling via the heterotrimeric G proteins is equally (if not more) important to its stimulation. The Regulator of G protein Signaling (RGS) protein superfamily are indispensable for GPCR signaling cessation at the cell membrane, and thus, for cellular control of GPCR signaling and function. Perturbations in both activation and termination of G protein signaling underlie many examples of cardiovascular dysfunction and heart disease pathogenesis. Despite the plethora of over 30 members comprising the mammalian RGS protein superfamily, each member interacts with a specific set of second messenger pathways and GPCR types/subtypes in a tissue/cell type-specific manner. An increasing number of studies over the past two decades have provided compelling evidence for the involvement of various RGS proteins in physiological regulation of cardiovascular GPCRs and, consequently, also in the pathophysiology of several cardiovascular ailments. This chapter summarizes the current understanding of the functional roles of RGS proteins as they pertain to cardiovascular, i.e., heart, blood vessel, and platelet GPCR function, with a particular focus on their implications for chronic heart failure pathophysiology and therapy.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States.
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| |
Collapse
|
5
|
Xia Z, Zhang C, Guo C, Song B, Hu W, Cui Y, Xue Y, Xia M, Xu D, Zhang S, Fang J. Nanoformulation of a carbon monoxide releasing molecule protects against cyclosporin A-induced nephrotoxicity and renal fibrosis via the suppression of the NLRP3 inflammasome mediated TGF-β/Smad pathway. Acta Biomater 2022; 144:42-53. [PMID: 35304324 DOI: 10.1016/j.actbio.2022.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Cyclosporin A (CsA) induced nephrotoxicity i.e., renal fibrosis is a critical clinical problem in renal transplant patients, in which chronic inflammatory response is the major cause. Previously, we developed a nano-drug delivery system for carbon monoxide (CO), a multi-functional gaseous molecule with a potent anti-inflammatory effect, i.e., SMA/CORM2, which showed therapeutic potential in several inflammatory disease models. Accordingly, in this study, we explored the potential and usefulness of SMA/CORM2 on CsA induced renal fibrosis. When mice were exposed to CsA for 4 weeks, severe injuries in the kidney as revealed by decreased kidney function and histological examination, and activation of NLRP3 inflammasome, as well as renal fibrosis along with the upregulation of transforming growth factor β (TGFβ)/Smad signaling molecule were observed, whereas SMA/CORM2 (1 mg/kg) treatment remarkably ameliorated the inflammatory injury and fibrosis in the kidney. CO is the major effector molecule of SMA/CORM2 which significantly suppressed the activation of NLRP3 inflammasome, and induced the downregulation of TGFβ/Smad signaling. Inhibition of NLRP3 inflammasome by its inhibitor MCC950 also similarly decreased TGFβ/Smad expression and subsequently improved kidney injury and renal fibrosis, suggesting SMA/CORM2 induced suppression of TGFβ/Smad signaling and renal signaling via an NLRP3 inflammasome-dependent pathway. Compared to native CORM2, SMA/CORM2 exhibited better therapeutic/preventive effects owing to its superior water-solubility and bioavailability. These findings strongly indicated the applicability of SMA/CORM2 as an enhanced permeability and retention (EPR) effect-based nanomedicine for CsA induced renal fibrosis as well as other inflammatory diseases. STATEMENT OF SIGNIFICANCE: Carbon monoxide (CO) is an important gaseous signaling molecule that plays a crucial role in the maintenance of homeostasis. Because of its versatile functions, it exhibits the potential as the target molecule for many diseases, including inflammatory diseases and cancer. The development of stable and disease-targeted delivery systems of CO is thus of interest and importance. Previously we developed a nano micellar CO donor SMA/CORM2 which shows superior bioavailability and therapeutic potential in many inflammatory disease models. We reported here, SMA/CORM2, through controlled release of CO, greatly ameliorated CsA-induced renal fibrosis via suppressing the NLRP3 inflammasome mediated TGF-β/Smad pathway. These findings suggest a new anti-inflammatory mechanism of CO, which also provides a new approach for controlling CsA-induced nephrotoxicity.
Collapse
|
6
|
Li Y, Inglese M, Dubash S, Barnes C, Brickute D, Braga MC, Wang N, Beckley A, Heinzmann K, Allott L, Lu H, Chen C, Fu R, Carroll L, Aboagye EO. Consideration of Metabolite Efflux in Radiolabelled Choline Kinetics. Pharmaceutics 2021; 13:1246. [PMID: 34452207 PMCID: PMC8400349 DOI: 10.3390/pharmaceutics13081246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is a complex microenvironmental condition known to regulate choline kinase α (CHKA) activity and choline transport through transcription factor hypoxia-inducible factor-1α (HIF-1α) and, therefore, may confound the uptake of choline radiotracer [18F]fluoromethyl-[1,2-2H4]-choline ([18F]-D4-FCH). The aim of this study was to investigate how hypoxia affects the choline radiotracer dynamics. Three underlying mechanisms by which hypoxia could potentially alter the uptake of the choline radiotracer, [18F]-D4-FCH, were investigated: 18F-D4-FCH import, CHKA phosphorylation activity, and the efflux of [18F]-D4-FCH and its phosphorylated product [18F]-D4-FCHP. The effects of hypoxia on [18F]-D4-FCH uptake were studied in CHKA-overexpressing cell lines of prostate cancer, PC-3, and breast cancer MDA-MB-231 cells. The mechanisms of radiotracer efflux were assessed by the cell uptake and immunofluorescence in vitro and examined in vivo (n = 24). The mathematical modelling methodology was further developed to verify the efflux hypothesis using [18F]-D4-FCH dynamic PET scans from non-small cell lung cancer (NSCLC) patients (n = 17). We report a novel finding involving the export of phosphorylated [18F]-D4-FCH and [18F]-D4-FCHP via HIF-1α-responsive efflux transporters, including ABCB4, when the HIF-1α level is augmented. This is supported by a graphical analysis of human data with a compartmental model (M2T6k + k5) that accounts for the efflux. Hypoxia/HIF-1α increases the efflux of phosphorylated radiolabelled choline species, thus supporting the consideration of efflux in the modelling of radiotracer dynamics.
Collapse
Affiliation(s)
- Yunqing Li
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Marianna Inglese
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Suraiya Dubash
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Chris Barnes
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Diana Brickute
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Marta Costa Braga
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Ning Wang
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Alice Beckley
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Kathrin Heinzmann
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Louis Allott
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Haonan Lu
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Cen Chen
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Ruisi Fu
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Laurence Carroll
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric O. Aboagye
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| |
Collapse
|
7
|
Sharma AK, Kaur J, Kaur T, Singh B, Yadav HN, Pathak D, Singh AP. Ameliorative role of bosentan, an endothelin receptor antagonist, against sodium arsenite-induced renal dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7180-7190. [PMID: 33026618 DOI: 10.1007/s11356-020-11035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Arsenic exposure is well documented to cause serious health hazards, such as cardiovascular abnormalities, neurotoxicity and nephrotoxicity. In the present study, we intended to explore the role of bosentan, an endothelial receptor antagonist, against sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Sodium arsenite (5 mg/kg, oral) was administered for 4 weeks to induce renal dysfunction in rats. Sodium arsenite intoxicated rats were treated with bosentan (50 and 100 mg/kg, oral) for 4 weeks. Arsenic led renal damage was demonstrated by significant increase in serum creatinine, urea, uric acid, potassium, fractional excretion of sodium, microproteinuria and decreased creatinine clearance in rats. Sodium arsenite resulted in marked oxidative stress in rat kidneys as indicated by profound increase in lipid peroxides, and superoxide anion generation alongwith decrease in reduced glutathione levels. Hydroxyproline assay highlighted arsenic-induced renal fibrosis in rats. Hematoxylin-eosin staining indicated glomerular and tubular changes in rat kidneys. Picrosirius red staining highlighted collagen deposition in renal tissues of arsenic treated rats. Immunohistological results demonstrated the reduction of renal eNOS expression in arsenic treated rats. Notably, treatment with bosentan attenuated arsenic-induced renal damage and resisted arsenic-led reduction in renal eNOS expression. In addition, sodium arsenite-induced alteration in hepatic parameters (serum aspartate aminotransferase, alanine transferase, alkaline phosphatase, bilirubin), oxidative stress and histological changes were abrogated by bosentan treatment in rats. Hence, we conclude that bosentan treatment attenuated sodium arsenite-induced oxidative stress, fibrosis and reduction in renal eNOS expression in rat kidneys. Moreover, bosentan abrogated arsenic led hepatic changes in rats.
Collapse
Affiliation(s)
- Ashwani Kumar Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Japneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | | | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
8
|
Jang YK, Chung TY, Shin YJ. Effect of Cyclosporine A-induced Senescence on Cultured Human Corneal Endothelial Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2020. [DOI: 10.3341/jkos.2020.61.9.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Teng Q, Ma L, Ma Y, Zhang Y, Kang N, Hu Y, Zhang S. The challenge of managing comorbidities: a case report of primary Sjogren's syndrome in a patient with acute intermittent porphyria. Intractable Rare Dis Res 2020; 9:137-140. [PMID: 32844069 PMCID: PMC7441034 DOI: 10.5582/irdr.2020.03064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Acute intermittent porphyria (AIP) is a rare inherited metabolic disease associated with heme metabolism. Primary Sjogren's syndrome (PSS) is a common autoimmune disease. The combined presence of AIP and PSS complicates treatment. A rare case of concomitant AIP and PSS is reported in this paper. A 30-year-old woman with AIP had recurrent acute abdominal pain, nausea and vomiting, constipation, persistent chest, back, and waist pain, red urine, positivity for porphobilinogen (PBG) in urine and a pathogenic mutation of the HMBS gene. Two and a half years after she was diagnosed with AIP, she was diagnosed with PSS based on dryness of the eyes and mouth, the elevation of immunoglobulins (IgG and IgA) and positive results on an anti-SS-A antibody test, an anti-SS-B antibody test, Schirmer's test and a labial gland biopsy. A mutation in the HMBS gene was detected in the patient and her cousin, but the patient had more severe AIP and more severe symptoms (such as epilepsy and a limp), which may be related to the co-morbidity of PSS. According to her PSS activity score, the patient had an ESSDAI score of 9 and required systemic treatment. However, potential medications were limited by AIP, so mycophenolate mofetil was eventually added to delay the progression of the primary disease.
Collapse
Affiliation(s)
- Qing Teng
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liyan Ma
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuelin Ma
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiran Zhang
- School of First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Ninglin Kang
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yuanxiang Hu
- Geriatrics, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Songyun Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Address correspondence to:Songyun Zhang, Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China. E-mail:
| |
Collapse
|
10
|
Wu Q, Kuca K. Metabolic Pathway of Cyclosporine A and Its Correlation with Nephrotoxicity. Curr Drug Metab 2019; 20:84-90. [DOI: 10.2174/1389200219666181031113505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022]
Abstract
Background:Cyclosporine A (CsA) is widely used for organ transplantation and autoimmune disorders. However, CsA nephrotoxicity is a serious side effect that limits the clinical use of CsA. The metabolism of CsA has a close relationship with this disease in renal-transplant patients. However, the metabolic pathways of CsA and its metabolizing enzymes have rarely been comprehensively reviewed. In this review, we have summarized the specific metabolic profiles of CsA in humans, especially renal-transplant patients. Moreover, the specific metabolizing enzymes and the potential roles that CsA metabolism plays in CsA nephrotoxicity were summarized and discussed.Methods:Electronic databases including PubMed, Web of Science, and Scifinder were searched with the keywords "Cyclosporine A and metabolism", and "Cyclosporine A and nephrotoxicity", "Cyclosporine A metabolism and nephrotoxicity". All these studies published until 2018 were included in this review.Results:The major metabolic pathways of CsA in humans are hydroxylation and N-demethylation. Normally, these metabolites are relatively less toxic than CsA. However, the metabolism of CsA in the kidneys is much weaker than that in the liver, which explains why CsA is so toxic to the kidneys. CYP3A families, especially CYP3A4 and CYP3A5, play an important role in the biotransformation of CsA. Moreover, increased lines of evidence show that some metabolites (including AM19) associate directly with nephrotoxicity in CsA-treated organ-transplant patients.Conclusion:The findings of this review help to further understand the metabolic activities of CsA in renal-transplant patients and cast some light on the mechanisms of CsA nephrotoxicity.
Collapse
Affiliation(s)
- Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Vaněčková I, Hojná S, Kadlecová M, Vernerová Z, Kopkan L, Červenka L, Zicha J. Renoprotective effects of ET(A) receptor antagonists therapy in experimental non-diabetic chronic kidney disease: Is there still hope for the future? Physiol Res 2018; 67:S55-S67. [PMID: 29947528 DOI: 10.33549/physiolres.933898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) is a life-threatening disease arising as a frequent complication of diabetes, obesity and hypertension. Since it is typically undetected for long periods, it often progresses to end-stage renal disease. CKD is characterized by the development of progressive glomerulosclerosis, interstitial fibrosis and tubular atrophy along with a decreased glomerular filtration rate. This is associated with podocyte injury and a progressive rise in proteinuria. As endothelin-1 (ET-1) through the activation of endothelin receptor type A (ET(A)) promotes renal cell injury, inflammation, and fibrosis which finally lead to proteinuria, it is not surprising that ET(A) receptors antagonists have been proven to have beneficial renoprotective effects in both experimental and clinical studies in diabetic and non-diabetic CKD. Unfortunately, fluid retention encountered in large clinical trials in diabetic CKD led to the termination of these studies. Therefore, several advances, including the synthesis of new antagonists with enhanced pharmacological activity, the use of lower doses of ET antagonists, the addition of diuretics, plus simply searching for distinct pathological states to be treated, are promising targets for future experimental studies. In support of these approaches, our group demonstrated in adult subtotally nephrectomized Ren-2 transgenic rats that the addition of a diuretic on top of renin-angiotensin and ET(A) blockade led to a further decrease of proteinuria. This effect was independent of blood pressure which was normalized in all treated groups. Recent data in non-diabetic CKD, therefore, indicate a new potential for ET(A) antagonists, at least under certain pathological conditions.
Collapse
Affiliation(s)
- I Vaněčková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mechanism of cyclosporine A nephrotoxicity: Oxidative stress, autophagy, and signalings. Food Chem Toxicol 2018; 118:889-907. [DOI: 10.1016/j.fct.2018.06.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022]
|