1
|
Jafari Gandomani S, Soleimani M, Fayazmilani R. Evaluation of the c-Fos expression in the hippocampus after fatigue caused by one session of endurance exercise in pre-pubertal and adult rats. Int J Neurosci 2024; 134:1450-1459. [PMID: 37812039 DOI: 10.1080/00207454.2023.2269471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Central fatigue plays an important role in reducing endurance exercise activity during brain development. c-Fos gene expression in the hippocampus was examined as an indicator of neuronal activation after exhaustion. METHODS Eighteen pre-pubertal male rats at four weeks old and 18 adult rats at eight weeks were randomly divided into three groups: Control (C), Constant time exercise (CTEx), Endurance Exercise until Exhaustion (ExhEx), which started at two minutes and ended in 20 min, the main swimming test was performed with a weight equal to 5% of the bodyweight attached to the rats' tail as a single session in experimental groups and was recorded at the end of their time, while to evaluate the force loss, the Grip strength was measured before and after the activity. The brain activation rate was examined by c-Fos gene expression and Nissl staining in CA3 and dentate gyrus (DG) in the hippocampus of all groups. RESULTS Power grip and Nissl positive neurons in CA3 and DG have been significantly higher in pre-pubertal rats than in adults, both in the CTEx group (p = 0.04) and in the ExhEx group (p < 0.001). Also, real-time exhaustion in the pre-pubertal group was significantly longer than in adults. c-Fos gene expression was significantly reduced in adults' hippocampus in comparison to preadolescence (p < 0.01) and control (p < 0.001). CONCLUSION These findings clarified that increased strength and longer fatigue in pre-puberal rats may lead to c-Fos gene expression and decreased neurons in the hippocampus. Perhaps this is a protective effect to suppress stress hormones.
Collapse
Affiliation(s)
- Samira Jafari Gandomani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Rana Fayazmilani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Reis CHO, Manzolli SG, Dos Santos L, Silva AA, Lima-Leopoldo AP, Leopoldo AS, Bocalini DS. Effects of physical training on the metabolic profile of rats exposed to chronic restraint stress. Clinics (Sao Paulo) 2024; 79:100411. [PMID: 38901134 PMCID: PMC11237683 DOI: 10.1016/j.clinsp.2024.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION Despite strong evidences supporting the protective role of exercise against stress-induced repercussions, the literature remains inconclusive regarding metabolic aspects. Therefore, this study aimed to evaluate the effect of Physical Training (PT) by swimming on the metabolic parameters of rats subjected to restraint stress. METHODS Wistar rats (n = 40) were divided into four groups: Control (C), Trained (T), Stressed (S), and Trained/Stressed (TS). The restraint stress protocol involved confining the animals in PVC pipes for 60 minutes/day for 12 weeks. Concurrently, the swimming PT protocol was performed without additional load in entailed sessions of 60 minutes conducted five days a week for the same duration. The following parameters were analyzed: fitness progression assessed by the physical capacity test, body mass, serum level of glucose, triglyceride, cholesterol and corticosterone, as well as glycemic tolerance test, evaluated after glucose administration (2 g/kg, i.p.). RESULTS Trained groups (T and TS) exhibited enhanced physical capacity (169 ± 21 and 162 ± 22% increase, respectively) compared to untrained groups (C: 9 ± 5 and S: 11 ± 13% increase). Corticosterone levels were significantly higher in the S group (335 ± 9 nmoL/L) compared to C (141 ± 3 nmoL/L), T (174 ± 3 nmoL/L) and TS (231 ± 7 nmoL/L), which did not differ from each other. There were no significant changes in serum glucose, cholesterol, and triglyceride levels among the groups. However, the glycemic curve after glucose loading revealed increased glycemia in the S group (area under curve 913 ± 30 AU) but the TS group exhibited values (673 ± 12 AU) similar to the groups C (644 ± 10 AU) and T (649 ± 9 AU). CONCLUSION Swimming-based training attenuated stress-induced corticosterone release and prevented glucose intolerance in rats, reinforcing the importance of exercise as a potential strategy to mitigate the pathophysiological effects of stress.
Collapse
Affiliation(s)
- Carlos H O Reis
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sports Center of the Universidade Federal do Espirito Santo - Campus Goiabeiras, Vitória, ES, Brazil
| | - Sabriny G Manzolli
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sports Center of the Universidade Federal do Espirito Santo - Campus Goiabeiras, Vitória, ES, Brazil
| | - Leonardo Dos Santos
- Cardiac Electromechanics Laboratory, Postgraduation Program in Physiological Sciences, Health Sciences Center, Universidade Federal do Espirito Santo - Campus Maruipe, Vitoria, ES, Brazil.
| | - Ariana A Silva
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sports Center of the Universidade Federal do Espirito Santo - Campus Goiabeiras, Vitória, ES, Brazil
| | - Ana Paula Lima-Leopoldo
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sports Center of the Universidade Federal do Espirito Santo - Campus Goiabeiras, Vitória, ES, Brazil
| | - André S Leopoldo
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sports Center of the Universidade Federal do Espirito Santo - Campus Goiabeiras, Vitória, ES, Brazil
| | - Danilo S Bocalini
- Experimental Physiology and Biochemistry Laboratory, Physical Education and Sports Center of the Universidade Federal do Espirito Santo - Campus Goiabeiras, Vitória, ES, Brazil
| |
Collapse
|
3
|
Martino MR, Habibi M, Ferguson D, Brookheart RT, Thyfault JP, Meyer GA, Lantier L, Hughey CC, Finck BN. Disruption of hepatic mitochondrial pyruvate and amino acid metabolism impairs gluconeogenesis and endurance exercise capacity in mice. Am J Physiol Endocrinol Metab 2024; 326:E515-E527. [PMID: 38353639 PMCID: PMC11193532 DOI: 10.1152/ajpendo.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.
Collapse
Affiliation(s)
- Michael R Martino
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mohammad Habibi
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Daniel Ferguson
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Rita T Brookheart
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - John P Thyfault
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Missouri, United States
| | - Gretchen A Meyer
- Department of Medicine, Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Curtis C Hughey
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Brian N Finck
- Division of Nutritional Sciences and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Martino MR, Habibi M, Ferguson D, Brookheart RT, Thyfault JP, Meyer GA, Lantier L, Hughey CC, Finck BN. Disruption of Hepatic Mitochondrial Pyruvate and Amino Acid Metabolism Impairs Gluconeogenesis and Endurance Exercise Capacity in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554345. [PMID: 37662392 PMCID: PMC10473655 DOI: 10.1101/2023.08.22.554345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Exercise robustly increases the glucose demands of skeletal muscle. This demand is met not only by muscle glycogenolysis, but also by accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting gluconeogenic efficiency and capacity on exercise performance by deleting hepatic mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or post-exercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in liver (DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of ²H/¹³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. The decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan crosstalk during exercise as described by the Cahill and Cori cycles.
Collapse
Affiliation(s)
- Michael R. Martino
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mohammad Habibi
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel Ferguson
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| | - Rita T. Brookheart
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| | - John P. Thyfault
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, MO
| | - Gretchen A. Meyer
- Department of Medicine, Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Curtis C. Hughey
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN
| | - Brian N. Finck
- Department of Medicine, Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Godoy G, Travassos PB, Antunes MM, Iwanaga CC, Sá-Nakanishi AB, Curi R, Comar JF, Bazotte RB. Strenuous swimming raises blood non-enzymatic antioxidant capacity in rats. Braz J Med Biol Res 2022; 55:e11891. [PMID: 35239782 PMCID: PMC8905668 DOI: 10.1590/1414-431x2022e11891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
The non-enzymatic antioxidant system protects blood components from oxidative damage and/or injury. Herein, plasma non-enzymatic antioxidant capacity after acute strenuous swimming exercise (Exe) and exercise until exhaustion (Exh) was measured in rats. The experiments were carried out in never exposed (Nex) and pre-exposed (Pex) groups. The Nex group did not undergo any previous training before the acute strenuous swimming test and the Pex group was submitted to daily swimming for 10 min in the first week and 15 min per day in the second week before testing. Plasma glucose, lactate, and pyruvate were measured and plasma total protein sulfhydryl groups (thiol), trolox equivalent antioxidant capacity (TEAC), ferric reducing ability of plasma (FRAP), and total radical-trapping antioxidant parameter (TRAP) levels were evaluated. There were marked increases in plasma lactate concentrations (Nex-Control 1.31±0.20 vs NexExe 4.16±0.39 vs NexExh 7.19±0.67) and in thiol (Nex-Control 271.9±5.6 vs NexExh 314.7±5.7), TEAC (Nex-Control 786.4±60.2 vs NexExh 1027.7±58.2), FRAP (Nex-Control 309.2±17.7 vs NexExh 413.4±24.3), and TRAP (Nex-Control 0.50±0.15 vs NexExh 2.6±0.32) levels after acute swimming and/or exhaustion. Also, there were increased plasma lactate concentrations (Pex-Control 1.39±0.15 vs PexExe 5.22±0.91 vs PexExh 10.07±0.49), thiol (Pex-Control 252.9±8.2 vs PexExh 284.6±6.7), FRAP (Pex-Control 296.5±15.4 vs PexExh 445.7±45.6), and TRAP (Pex-Control 1.8±0.1 vs PexExh 4.6±0.2) levels after acute swimming and/or exhaustion. Lactate showed the highest percent of elevation in the Nex and Pex groups. In conclusion, plasma lactate may contribute to plasma antioxidant defenses, and the TRAP assay is the most sensitive assay for assessing plasma non-antioxidant capacity after strenuous exercise.
Collapse
Affiliation(s)
- G Godoy
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - P B Travassos
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - M M Antunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C C Iwanaga
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - A B Sá-Nakanishi
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - R Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil.,Seção de Produção de Imunobiológicos, Centro Bioindustrial, Instituto Butantan, São Paulo, SP, Brasil
| | - J F Comar
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - R B Bazotte
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|