1
|
Alberto-Silva C, Pantaleão HQ, da Silva BR, da Silva JCA, Echeverry MB. Activation of M1 muscarinic acetylcholine receptors by proline-rich oligopeptide 7a (<EDGPIPP) from Bothrops jararaca snake venom rescues oxidative stress-induced neurotoxicity in PC12 cells. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230043. [PMID: 38362565 PMCID: PMC10868729 DOI: 10.1590/1678-9199-jvatitd-2023-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024] Open
Abstract
Background The bioactive peptides derived from snake venoms of the Viperidae family species have been promising as therapeutic candidates for neuroprotection due to their ability to prevent neuronal cell loss, injury, and death. Therefore, this study aimed to evaluate the cytoprotective effects of a synthetic proline-rich oligopeptide 7a (PRO-7a; Methods Both cells were pre-treated for four hours with different concentrations of PRO-7a, submitted to H2O2-induced damage for 20 h, and then the oxidative stress markers were analyzed. Also, two independent neuroprotective mechanisms were investigated: a) L-arginine metabolite generation via argininosuccinate synthetase (AsS) activity regulation to produce agmatine or polyamines with neuroprotective properties; b) M1 mAChR receptor subtype activation pathway to reduce oxidative stress and neuron injury. Results PRO-7a was not cytoprotective in C6 cells, but potentiated the H2O2-induced damage to cell integrity at a concentration lower than 0.38 μM. However, PRO-7a at 1.56 µM, on the other hand, modified H2O2-induced toxicity in PC12 cells by restoring cell integrity, mitochondrial metabolism, ROS generation, and arginase indirect activity. The α-Methyl-DL-aspartic acid (MDLA) and L-NΩ-Nitroarginine methyl ester (L-Name), specific inhibitors of AsS and nitric oxide synthase (NOS), which catalyzes the synthesis of polyamines and NO from L-arginine, did not suppress PRO-7a-mediated cytoprotection against oxidative stress. It suggested that its mechanism is independent of the production of L-arginine metabolites with neuroprotective properties by increased AsS activity. On the other hand, the neuroprotective effect of PRO-7a was blocked in the presence of dicyclomine hydrochloride (DCH), an M1 mAChR antagonist. Conclusions For the first time, this work provides evidence that PRO-7a-induced neuroprotection seems to be mediated through M1 mAChR activation in PC12 cells, which reduces oxidative stress independently of AsS activity and L-arginine bioavailability.
Collapse
Affiliation(s)
- Carlos Alberto-Silva
- Natural and Humanities Sciences Center (CCNH), Experimental
Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do
Campo, SP, Brazil
| | - Halyne Queiroz Pantaleão
- Natural and Humanities Sciences Center (CCNH), Experimental
Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do
Campo, SP, Brazil
| | - Brenda Rufino da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental
Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do
Campo, SP, Brazil
| | - Julio Cezar Araujo da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental
Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do
Campo, SP, Brazil
| | - Marcela Bermudez Echeverry
- Center for Mathematics, Computation and Cognition (CMCC), Federal
University of ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
2
|
Graziani D, Ribeiro J, Turones L, Costa E, Reis-Silva L, Araújo E, de Paula L, Ferreira-Junior M, Gomes R, Campos H, Ghedini P, Batista K, Fernandes K, Xavier C. Behavioral effects of a low molecular weight peptide fraction from Phaseolus vulgaris in rats. Braz J Med Biol Res 2022; 55:e12314. [PMID: 36477952 PMCID: PMC9728632 DOI: 10.1590/1414-431x2022e12314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022] Open
Abstract
Seminal studies stated that bean proteins are efficient neuronal tracers with affinity for brain tissue. A low molecular weight peptide fraction (<3kDa) from Phaseolus vulgaris (PV3) was previously reported to be antioxidant, non-cytotoxic, and capable of reducing reactive oxygen species and increasing nitric oxide in cells. We evaluated the effects of PV3 (5, 50, 100, 500, and 5000 µg/kg) on behavior and the molecular routes potentially involved. Acute and chronic PV3 treatments were performed before testing Wistar rats: i) in the elevated plus-maze (EPM) to assess the anxiolytic-like effect; ii) in the open field (OF) to evaluate locomotion and exploration; and iii) for depression-like behavior in forced swimming (FS). Catecholaminergic involvement was tested using the tyrosine hydroxylases (TH) enzyme inhibitor, α-methyl-DL-tyrosine (AMPT). Brain areas of chronically treated groups were dissected to assess: i) lipid peroxidation (LPO); ii) carbonylated proteins (CP); iii) superoxide dismutase (SOD) and catalase (CAT) enzymatic activities. Neuronal nitric oxide synthases (nNOS) and argininosuccinate synthase (ASS) protein expression was evaluated by western blotting. Acute treatment with PV3 increased the frequency and time spent in the EPM open arms, suggesting anxiolysis. PV3 increased crossing episodes in the OF. These PV3 effects on anxiety and locomotion were absent in the chronically treated group. Acute and chronic PV3 treatments reduced the immobility time in the FS test, suggesting an antidepressant effect. TH inhibition by AMPT reverted acute PV3 effects. PV3 decreased LPO and CP levels and SOD and CAT activities, whereas nNOS and ASS were reduced in few brain areas. In conclusion, PV3 displayed central antioxidant actions that are concomitant to catecholaminergic-dependent anxiolytic and antidepressant effects.
Collapse
Affiliation(s)
- D. Graziani
- Laboratório de Neurobiologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil,Laboratório Multiusuário de Análise de Moléculas, Células e Tecidos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - J.V.V. Ribeiro
- Laboratório de Neurobiologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil,Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - L.C. Turones
- Laboratório de Farmacologia de Produtos Naturais e Sintéticos, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - E.A. Costa
- Laboratório de Farmacologia de Produtos Naturais e Sintéticos, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - L.L. Reis-Silva
- Laboratório de Neurobiologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - E.G. Araújo
- Laboratório Multiusuário de Análise de Moléculas, Células e Tecidos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - L.G.F. de Paula
- Laboratório Multiusuário de Análise de Moléculas, Células e Tecidos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - M.D. Ferreira-Junior
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - R.M. Gomes
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - H.M. Campos
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - P.C. Ghedini
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - K.A. Batista
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil,Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - K.F. Fernandes
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - C.H. Xavier
- Laboratório de Neurobiologia de Sistemas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| |
Collapse
|
3
|
Talukdar A, Maddhesiya P, Namsa ND, Doley R. Snake venom toxins targeting the central nervous system. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Priya Maddhesiya
- Cell Biology and Anatomy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Nima Dondu Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|