1
|
Li L, Ge S, Wang Y, Zhu H, Feng B. Untargeted metabolomics reveal the corrective effects of scorpion on epileptic mice. Sci Rep 2025; 15:937. [PMID: 39762379 PMCID: PMC11704236 DOI: 10.1038/s41598-024-84028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Scorpion is a commonly used drug in traditional Chinese medicine for treating epilepsy, although the exact mechanisms are not yet fully understood. This study aimed to compare the treatment effects of Scorpion water extract (SWE) and Scorpion ethanol extract (SEE) on mice with pentetrazole-induced epilepsy and investigate the possible mechanisms through metabolomics methods. A pentetrazole-induced epileptic mice model was used to assess the corrective effects of SWE and SEE. Untargeted metabolomics, utilizing UPLC-Q-TOF/MS, was employed to analyze the metabolic profiles of mice and identify metabolic changes following scorpion treatment. The results revealed that only SWE showed therapeutic effects in epileptic mice. Metabolomics analysis demonstrated significant alterations in metabolic signatures between the pentetrazole-induced epileptic mice and SWE groups. By utilizing orthogonal partial least squares discrimination analysis, 44 and 108 potential biomarkers in mouse serum were identified in positive and negative ion modes, respectively. Differential metabolites related to epilepsy were then used to pinpoint relevant pathways in epileptic mice, such as linoleic acid metabolism, biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, and ether lipid metabolism. In conclusion, this study highlights the corrective effects of Scorpion on epileptic mice and provides insight into the underlying metabolic pathways involved in its efficacy.
Collapse
Affiliation(s)
- Lele Li
- School of Pharmacy, Jilin Medical University, Jilin, 132013, Jilin, China
| | - Shengyu Ge
- School of Pharmacy, Jilin Medical University, Jilin, 132013, Jilin, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Heyun Zhu
- School of Pharmacy, Jilin Medical University, Jilin, 132013, Jilin, China.
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin, 132013, Jilin, China.
| |
Collapse
|
2
|
Wang Y, Wang Z, Guo S, Li Q, Kong Y, Sui A, Ma J, Lu L, Zhao J, Li S. SVHRSP Alleviates Age-Related Cognitive Deficiency by Reducing Oxidative Stress and Neuroinflammation. Antioxidants (Basel) 2024; 13:628. [PMID: 38929067 PMCID: PMC11200511 DOI: 10.3390/antiox13060628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Our previous studies have shown that scorpion venom heat-resistant synthesized peptide (SVHRSP) induces a significant extension in lifespan and improvements in age-related physiological functions in worms. However, the mechanism underlying the potential anti-aging effects of SVHRSP in mammals remains elusive. METHODS Following SVHRSP treatment in senescence-accelerated mouse resistant 1 (SAMR1) or senescence-accelerated mouse prone 8 (SAMP8) mice, behavioral tests were conducted and brain tissues were collected for morphological analysis, electrophysiology experiments, flow cytometry, and protein or gene expression. The human neuroblastoma cell line (SH-SY5Y) was subjected to H2O2 treatment in cell experiments, aiming to establish a cytotoxic model that mimics cellular senescence. This model was utilized to investigate the regulatory mechanisms underlying oxidative stress and neuroinflammation associated with age-related cognitive impairment mediated by SVHRSP. RESULTS SVHRSP significantly ameliorated age-related cognitive decline, enhanced long-term potentiation, restored synaptic loss, and upregulated the expression of synaptic proteins, therefore indicating an improvement in synaptic plasticity. Moreover, SVHRSP demonstrated a decline in senescent markers, including SA-β-gal enzyme activity, P16, P21, SIRT1, and cell cycle arrest. The underlying mechanisms involve an upregulation of antioxidant enzyme activity and a reduction in oxidative stress-induced damage. Furthermore, SVHRSP regulated the nucleoplasmic distribution of NRF2 through the SIRT1-P53 pathway. Further investigation indicated a reduction in the expression of proinflammatory factors in the brain after SVHRSP treatment. SVHRSP attenuated neuroinflammation by regulating the NF-κB nucleoplasmic distribution and inhibiting microglial and astrocytic activation through the SIRT1-NF-κB pathway. Additionally, SVHRSP significantly augmented Nissl body count while suppressing neuronal loss. CONCLUSION SVHRSP could remarkably improve cognitive deficiency by inhibiting oxidative stress and neuroinflammation, thus representing an effective strategy to improve brain health.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
- Department of International Medical Services, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Songyu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Qifa Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Aoran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Li Lu
- Department of Anatomy, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
3
|
Wu J, Cao M, Peng Y, Dong B, Jiang Y, Hu C, Zhu P, Xing W, Yu L, Xu R, Chen Z. Research progress on the treatment of epilepsy with traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155022. [PMID: 37647670 DOI: 10.1016/j.phymed.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/18/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) system is a medical system that has been expanding for thousands of years that was formed by the extensive clinical practice experience of many physicians and the accumulation of personal medication habits in China. In TCM, there is a history of long-term medication for epilepsy, the main treatment for epilepsy is TCM drugs and its prescription, supplemented by TCM modalities such as acupuncture therapy, moxibustion therapy, tuina, emotion adjustment therapy, etc. PURPOSE: With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for epilepsy treatment have been gradually revealed. This review aimed to comprehensively summarize the TCM treatment of epilepsy, focusing on the current TCM drugs and some TCM formulae for the treatment of epilepsy, and to discuss the research progress of TCM for the treatment of epilepsy, and to provide a reference to develop future related studies in this field. MATERIALS AND METHODS The mechanism of action of antiepileptic drugs (AEDs) was interpreted from different perspectives by searching online databases and querying various materials identify drugs used in both modern medicine and TCM systems for the treatment of epilepsy. We collected all relevant TCM for epilepsy literature published in the last 30 years up to December 2022 from electronic databases such as PubMed, CNKI and Web of Science, and statistically analyzed the literature for the following keyword information. The search terms comprise the keywords "TCM", "phytochemistry", "pharmacological activity", "epilepsy" and "traditional application" as a combination. Scientific plant names were provided by "The Plant List" (www.theplantlist.org). RESULTS Epilepsy is a complex and serious disease of the brain and nervous system. At present, the treatment of epilepsy in modern medicine is mainly surgery and chemotherapy, but there are many serious side effects. By summarizing the treatment of epilepsy in TCM, it is found that there are various methods to treat epilepsy in TCM, mainly TCM drugs and its formulae. Many TCM drugs have antiepileptic effects. Now found that the main effective TCM drugs for the treatment of epilepsy are Curcumae Longae Rhizoma, Scorpio, Acori Tatarinowii Rhizoma, Uncariae Ramulus Cum Uncis and Ganoderma, etc. And the main compounds that play a role in the treatment of epilepsy are curcumin, gastrodin, ligustrazine, baicalin and rhynchophylline, etc. These TCM drugs have played an important role in the treatment of epilepsy in TCM clinic. However, the chemically active components of these TCM drugs are diverse and their mechanisms of action are complex, which are not fully understood and need to be further explored. CONCLUSIONS TCM treats epilepsy in a variety of ways, and with the discovery of a variety of potential bioactive substances for treatment of epilepsy. With the new progress in the research of other TCM treatment methods for epilepsy, TCM will have greater potential in the clinical application of epilepsy.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Ying Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Baohua Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Yunxiu Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Pengjin Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Weidei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, school of pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Analysis of Some Putative Novel Peptides from Iranian Scorpion Venom Glands, Hemiscorpius lepturus, Using cDNA Library Construction. Jundishapur J Nat Pharm Prod 2023. [DOI: 10.5812/jjnpp-133423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: To date, more than 300,000 distinct peptides have been identified in scorpion venom. However, only a limited number of these peptides have been described. Objectives: We characterized some putative peptides from the venom gland cDNA library of the Iranian yellow scorpion Hemiscorpius lepturus”. Methods: Total RNA was extracted from yellow Iranian scorpion glands. Single-stranded cDNA (sscDNA) and double-stranded cDNA (dscDNA) were synthesized by polymerase chain reaction (PCR). A cDNA library was achieved by inserting dscDNA into a special vector and subsequently transformed to chemically competent Escherichia coli as a host. The library was screened by culturing the liquid library on Lysogeny broth (LB)-agar plates. Analysis of positive clones was performed by plasmid extraction and the sequencing of the inserts. Finally, all cDNA sequences were analyzed and characterized by bioinformatics software. Results: One hundred colonies were randomly analyzed. Eighty-nine cDNA sequences had acceptable quality for bioinformatics analysis. Five sequences were selected for further analysis. The peptides related to these sequences were divided into two groups, non-disulfide bridge peptides (NDBP) and disulfide bridge peptides (DBP), the application of which in health and medical issues has been suggested. Conclusions: The data obtained in this study may be an important resource for further in vivo and in vitro functional assays to identify valuable therapeutic peptides.
Collapse
|
5
|
Guo SY, Guan RX, Chi XD, Yue-Zhang, Sui AR, Zhao W, Kundu S, Yang JY, Zhao J, Li S. Scorpion venom heat-resistant synthetic peptide protects dopamine neurons against 6-hydroxydopamine neurotoxicity in C. elegans. Brain Res Bull 2022; 190:195-203. [DOI: 10.1016/j.brainresbull.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022]
|
6
|
Wang YZ, Guo SY, Kong RL, Sui AR, Wang ZH, Guan RX, Supratik K, Zhao J, Li S. Scorpion Venom Heat–Resistant Synthesized Peptide Increases Stress Resistance and Extends the Lifespan of Caenorhabditis elegans via the Insulin/IGF-1-Like Signal Pathway. Front Pharmacol 2022; 13:919269. [PMID: 35910355 PMCID: PMC9330001 DOI: 10.3389/fphar.2022.919269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Improving healthy life expectancy by targeting aging-related pathological changes has been the spotlight of geroscience. Scorpions have been used in traditional medicine in Asia and Africa for a long time. We have isolated heat-resistant peptides from scorpion venom of Buthusmartensii Karsch (SVHRP) and found that SVHRP can attenuate microglia activation and protect Caenorhabditis elegans (C. elegans) against β-amyloid toxicity. Based on the amino acid sequence of these peptides, scorpion venom heat–resistant synthesized peptide (SVHRSP) was prepared using polypeptide synthesis technology. In the present study, we used C. elegans as a model organism to assess the longevity-related effects and underlying molecular mechanisms of SVHRSP in vivo. The results showed that SVHRSP could prolong the lifespan of worms and significantly improve the age-related physiological functions of worms. SVHRSP increases the survival rate of larvae under oxidative and heat stress and decreases the level of reactive oxygen species and fat accumulation in vivo. Using gene-specific mutation of C. elegans, we found that SVHRSP-mediated prolongation of life depends on Daf-2, Daf-16, Skn-1, and Hsf-1 genes. These results indicate that the antiaging mechanism of SVHRSP in nematodes might be mediated by the insulin/insulin-like growth factor-1 signaling pathway. Meanwhile, SVHRSP could also up-regulate the expression of stress-inducing genes Hsp-16.2, Sod-3, Gei-7, and Ctl-1 associated with aging. In general, our study may have important implications for SVHRSP to promote healthy aging and provide strategies for research and development of drugs to treat age-related diseases.
Collapse
Affiliation(s)
- Ying-Zi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rui-Li Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Zhen-Hua Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rong-Xiao Guan
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Kundu Supratik
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| |
Collapse
|
7
|
Soares-Silva B, Beserra-Filho JIA, Morera PMA, Custódio-Silva AC, Maria-Macêdo A, Silva-Martins S, Alexandre-Silva V, Silva SP, Silva RH, Ribeiro AM. The bee venom active compound melittin protects against bicuculline-induced seizures and hippocampal astrocyte activation in rats. Neuropeptides 2022; 91:102209. [PMID: 34808488 DOI: 10.1016/j.npep.2021.102209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Epilepsy is a chronic neuropathology characterized by an abnormal hyperactivity of neurons that generate recurrent, spontaneous, paradoxical and synchronized nerve impulses, leading or not to seizures. This neurological disorder affects around 70 million individuals worldwide. Pharmacoresistance is observed in about 30% of the patients and long-term use of antiepileptics may induce serious side effects. Thus, there is an interest in the study of the therapeutic potential of bioactive substances isolated from natural products in the treatment of epilepsy. Arthropod venoms contain neurotoxins that have high affinity for molecular structures in the neural tissue such as receptors, transporters and ion channels both in glial and neuronal membranes. This study evaluated the potential neuroprotective effect of melittin (MEL), an active compound of bee venom, in the bicuculline-induced seizure model (BIC) in rats. Male Wistar rats (3 months, 250-300 g) were submitted to surgery for the implantation of a unilateral cannula in the lateral ventricle. After the recovery period, rats received a microinjection of saline solution or MEL (0.1 mg per animal). Firstly, rats were evaluated in the open field (20 min) and in the elevated plus maze (5 min) tests after received microinjection of saline or MEL. After, 30 min later animals received BIC (100 mg/ml) or saline, and their behaviors were analyzed for 20 min in the open field according to a seizure scale. At the end, rats were euthanized, brains collected and processed to glial fibrillary acidic protein (GFAP) immunohistochemistry evaluation. No changes were observed in MEL-treated rats in the open field and elevated plus maze. However, 90% of MEL-treated animals were protected against seizures induced by BIC. There was an increase in the latency for the onset of seizures, accompanied by a reduction of GFAP-immunoreactivity cells in the dentate gyrus and CA1. Thus, our study suggests that MEL has an anticonvulsant potential, and further studies are needed to elucidate the mechanisms involved in this action.
Collapse
Affiliation(s)
| | - José Ivo Araújo Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil; Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | | | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Regina Helena Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|