1
|
Wang XL, Ji YB, Li SX, Serchov T. The crosstalk between CREB and PER2 mediates the transition between mania- and depression-like behavior. Neuropsychopharmacology 2025:10.1038/s41386-025-02076-5. [PMID: 40011706 DOI: 10.1038/s41386-025-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder characterized by alternating manic and depressive episodes. The molecular mechanisms underlying the transition between mania and depression remain unclear. Utilizing a mania animal model induced by ouabain, we observed reduced phosphorylated level of cyclic AMP-responsive element-binding protein (pCREB) and Period (PER)2 expression in the cornu ammonis (CA1) region of the hippocampus, which were restored by lithium treatment. shRNA knockdown of CREB or Per2 in CA1 region induced mania-like behavior, while overexpression of both factors resulted in depression-like behavior. Furthermore, our protein analyses revealed that the upregulation or downregulation of CREB or Per2 influenced each other's expression. Co-immunoprecipitation results demonstrated that CREB interacts with PER2. Taken together, our data suggest for potential inter-regulatory crosstalk between CREB-PER2 in hippocampal CA1 region, which mediates the transition between mania- and depression-like behaviors.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Ji'nan, 250012, Shandong, China.
- Centre National de La Recherche Scientifque (CNRS), Université de Strasbourg, Institut Des Neurosciences Cellulaires Et Intégratives (INCI) UPR 3212, 67000, Strasbourg, France.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.
| | - Yan-Bin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, 250012, Shandong, China
| | - Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Tsvetan Serchov
- Centre National de La Recherche Scientifque (CNRS), Université de Strasbourg, Institut Des Neurosciences Cellulaires Et Intégratives (INCI) UPR 3212, 67000, Strasbourg, France.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Can GŞ, Bakır E, Oktay Y. Functional Annotation of Bipolar Disorder 2 Risk Location Implicates Novel Susceptibility Genes. Neuropsychobiology 2025; 84:65-73. [PMID: 39809235 DOI: 10.1159/000543504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Bipolar 2 disorder (BD2) is an independent disease with specific familial aggregation, significant functional impairment, specific treatment challenges, and several distinctive clinical features. However, unlike bipolar 1 disorder, studies investigating causal and functional genes are lacking. This study aimed to identify and prioritize causal genetic variants and genes for BD2 by analysing brain-specific gene expression markers, improve the understanding of its genetic underpinnings, and support advancements in diagnosis, treatment, and prognosis. METHOD We used FUMA, a genome-wide association study (GWAS) annotation tool, to pinpoint potential causal variants and genes from the largest BD2 GWAS data. Candidate causal variants most likely affecting brain gene expression were prioritized using the following criteria: (1) variants identified as eSNPs in any brain region within any brain expression quantitative trait loci (eQTL) dataset; (2) variants annotated in the Regulome database with a score <5, indicating likely functional localization; (3) the most common 15-core chromatin state across all cell types in the Roadmap Epigenomics data being ≤7, reflecting an open chromatin state; (4) localization in genomic regions with evidence of 3D chromatin interactions, as such interactions mediate genetic effects on gene expression. RESULTS We identified AGRN, ORMDL3, SLC25A39, RUNDC3A, NOS2, C1orf159, RP11-5407.18, RP11-465B22.3, RP11-5407.17 as candidate causal genes. These genes are associated with important pathways such as synapse formation, mitochondrial and oxidative metabolism, intracellular transport, neurotransmission, and lipid metabolism-related pathways. CONCLUSION This study provides a guide for further experimental validation of functional variants, BD2-associated genes, and novel drug targets.
Collapse
Affiliation(s)
- Güneş Şayan Can
- Neuro-Genomics Lab, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ebru Bakır
- Neuro-Genomics Lab, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Yavuz Oktay
- Neuro-Genomics Lab, Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
3
|
Damri O, Agam G. Lithium, Inflammation and Neuroinflammation with Emphasis on Bipolar Disorder-A Narrative Review. Int J Mol Sci 2024; 25:13277. [PMID: 39769042 PMCID: PMC11678236 DOI: 10.3390/ijms252413277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
This narrative review examines lithium's effects on immune function, inflammation and cell survival, particularly in bipolar disorder (BD) in in vitro studies, animal models and clinical studies. In vitro studies show that high lithium concentrations (5 mM, beyond the therapeutic window) reduce interleukin (IL)-1β production in monocytes and enhance T-lymphocyte resistance, suggesting a protective role against cell death. Lithium modulates oxidative stress in lipopolysaccharide (LPS)-activated macrophages by inhibiting nuclear factor (NF)-ƙB activity and reducing nitric oxide production. At therapeutically relevant levels, lithium increased both pro-inflammatory [interferon (INF)-γ, IL-8 and tumor necrosis factor (TNF)-α)] and anti-inflammatory (IL-10) cytokines on whole blood supernatant culture in healthy volunteers, influencing the balance of pro- and anti-inflammatory responses. Animal models reveal lithium's potential to alleviate inflammatory diseases by reducing pro-inflammatory cytokines and enhancing anti-inflammatory responses. It also induces selective macrophage death in atherosclerotic plaques without harming other cells. In primary rat cerebellum cultures (ex vivo), lithium prevents neuronal loss and inhibits astroglial growth, impacting astrocytes and microglia. Clinical studies show that lithium alters cytokine profiles and reduces neuroinflammatory markers in BD patients. Chronic treatment decreases IL-2, IL-6, IL-10 and IFN-γ secretion from peripheral blood leukocytes. Lithium response correlates with TNF-α levels, with poor responders showing higher TNF-α. Overall, these findings elucidate lithium's diverse mechanisms in modulating immune responses, reducing inflammation and promoting cell survival, with significant implications for managing BD and other inflammation-related conditions. Yet, to better understand the drug's impact in BD and other inflammatory/neuroinflammatory conditions, further research is warranted to appreciate lithium's therapeutic potential and its role in immune regulation.
Collapse
Affiliation(s)
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| |
Collapse
|
4
|
Azari N, Rezaee M, Dayer D, Tabandeh MR. Dimethyl itaconate modulates neuroprotective effect on primary rat astrocytes under inflammatory condition by regulating the expression of neurotrophic factors and TrkA/B-P75 receptors. Neurol Res 2024; 46:1137-1148. [PMID: 39489601 DOI: 10.1080/01616412.2024.2423583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Astrocytes, specialized glial cells, are essential for maintaining the central nervous system homeostasis. Inflammatory conditions can disrupt neurotrophic factors and receptor expression in astrocytes, leading to potential central nervous system damage. Itaconate, recently identified for its anti-inflammatory properties, was investigated in this study for its effects on neurotrophic factors in LPS-stimulated primary rat astrocytes. METHODS Primary rat astrocyte cells were isolated from one-day-old Wistar rats and exposed to 1 µg/ml lipopolysaccharide (LPS) for 6 h to stimulate inflammation. The effect of DMI (62.5, 125, and 250 µM for 18 h) on the cell viability of astrocyte cells exposed to LPS was evaluated by the MTT assay. The effects of DMI on the mRNA and protein levels of NGF, BDNF, and GDNF were evaluated using ELISA and qRT-PCR assays. Protein and mRNA levels of neurotrophic factor receptors (TrkA, TrkB, and P75) were evaluated using qRT-PCR and Western blot analyses. RESULTS The results showed that DMI suppressed astrocytes cell death induced by LPS in a dose-dependent manner. DMI dose-dependently restored the reduced mRNA and protein levels of NGF, BDNF, GDNF, and TrkA and TrkB receptors in LPS-treated astrocytes, but it significantly decreased the p75 expression in the same condition. CONCLUSION In conclusion, DMI may be able to support astrocyte survival and functions based on the restoration of neurotrophic factors and their receptors expression in LPS-stimulated astrocyte cells. This suggests that DMI could be a promising therapeutic option for neurodegenerative diseases characterized by inflammation-induced astrocyte dysfunction.
Collapse
Affiliation(s)
- Nooshin Azari
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Malahat Rezaee
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Warlick Iv H, Tocci D, Prashar S, Boldt E, Khalil A, Arora S, Matthews T, Wahid T, Fernandez R, Ram D, Leon L, Arain A, Rey J, Davis K. Role of vesicular monoamine transporter-2 for treating attention deficit hyperactivity disorder: a review. Psychopharmacology (Berl) 2024; 241:2191-2203. [PMID: 39302436 DOI: 10.1007/s00213-024-06686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
RATIONALE The Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) classifies attention deficit hyperactivity disorder (ADHD) as a neurodevelopmental disorder that interferes with human functioning and development. As the clinical presentation of ADHD involves a deficiency in executive function, neurocognitive deficits involving distinctive neuropathological changes must be present for clinical diagnosis. OBJECTIVES The vesicular monoamine transporter (VMAT), specifically VMAT-2, plays a role in ADHD pathogenesis. In addition, experimental data show that the stimulants (amphetamines and methylphenidate) are first-line treatments for the condition because of their extensive interaction with VMAT-2. The interactions of peptides, bupropion, and nutritional supplements with VMAT-2 receptors have been researched, but more evidence is needed to elucidate their pharmacodynamic properties. Therefore, this literature review evaluated the current pharmacological treatment modalities, peptides, and nutritional supplements for ADHD that target the VMAT-2 system. METHODS, RESULTS, AND CONCLUSIONS We obtained relevant studies from several platforms, including the National Center for Biotechnology, Clinical Key, Access Medicine, and PubMed. From the results of these studies, we observed that stimulants interact highly with the VMAT-2 transporter, with omega-3 fatty acids, peptides, and bupropion exerting some modulatory activity on VMAT-2. These agents should be considered for the future treatment of ADHD, although clinical-level research involving human participants is necessary.
Collapse
Affiliation(s)
- Halford Warlick Iv
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA.
| | - Darcy Tocci
- Dr. Kiran C. Patel College of Allopathic Medicine, Health Profession Division, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sukriti Prashar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Erick Boldt
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Alena Khalil
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Simran Arora
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Thomas Matthews
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Talha Wahid
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Richard Fernandez
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Dhiya Ram
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Lexie Leon
- Dr. Kiran C. Patel College of Osteopathic Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Fort Lauderdale, Florida, USA
| | - Arisha Arain
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Jose Rey
- College of Pharmacy, Health Profession Division, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Kelley Davis
- Dr. Kiran C. Patel College of Allopathic Medicine, Health Profession Division, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
6
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
7
|
Gölöncsér F, Baranyi M, Tod P, Maácz F, Sperlágh B. P2X7 receptor inhibition alleviates mania-like behavior independently of interleukin-1β. iScience 2024; 27:109284. [PMID: 38444608 PMCID: PMC10914489 DOI: 10.1016/j.isci.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Purinergic dysfunctions are associated with mania and depression pathogenesis. P2X7 receptor (P2X7R) mediates the IL-1β maturation via NLRP3 inflammasome activation. We tested in a mouse model of the subchronic amphetamine (AMPH)-induced hyperactivity whether P2X7R inhibition alleviated mania-like behavior through IL-1β. Treatment with JNJ-47965567, a P2X7R antagonist, abolished AMPH-induced hyperlocomotion in wild-type and IL-1α/β-knockout male mice. The NLRP3 inhibitor MCC950 failed to reduce AMPH-induced locomotion in WT mice, whereas the IL-1 receptor antagonist anakinra slightly increased it. AMPH increased IL-10, TNF-α, and TBARS levels, but did not influence BDNF levels, serotonin, dopamine, and noradrenaline content in brain tissues in either genotypes. JNJ-47965567 and P2rx7-gene deficiency, but not IL-1α/β-gene deficiency, attenuated AMPH-induced [3H]dopamine release from striatal slices. In wild-type and IL-1α/β-knockout female mice, JNJ-47965567 was also effective in attenuating AMPH-induced hyperlocomotion. This study suggests that AMPH-induced hyperactivity is modulated by P2X7Rs, but not through IL-1β.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Fruzsina Maácz
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D Studies, 1083 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D Studies, 1083 Budapest, Hungary
| |
Collapse
|
8
|
Gutiérrez-Casares JR, Quintero J, Segú-Vergés C, Rodríguez Monterde P, Pozo-Rubio T, Coma M, Montoto C. In silico clinical trial evaluating lisdexamfetamine's and methylphenidate's mechanism of action computational models in an attention-deficit/hyperactivity disorder virtual patients' population. Front Psychiatry 2023; 14:939650. [PMID: 37333910 PMCID: PMC10273406 DOI: 10.3389/fpsyt.2023.939650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/21/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is an impairing psychiatric condition with the stimulants, lisdexamfetamine (LDX), and methylphenidate (MPH), as the first lines pharmacological treatment. Methods Herein, we applied a novel in silico method to evaluate virtual LDX (vLDX) and vMPH as treatments for ADHD applying quantitative systems pharmacology (QSP) models. The objectives were to evaluate the model's output, considering the model characteristics and the information used to build them, to compare both virtual drugs' efficacy mechanisms, and to assess how demographic (age, body mass index, and sex) and clinical characteristics may affect vLDX's and vMPH's relative efficacies. Results and Discussion We molecularly characterized the drugs and pathologies based on a bibliographic search, and generated virtual populations of adults and children-adolescents totaling 2,600 individuals. For each virtual patient and virtual drug, we created physiologically based pharmacokinetic and QSP models applying the systems biology-based Therapeutic Performance Mapping System technology. The resulting models' predicted protein activity indicated that both virtual drugs modulated ADHD through similar mechanisms, albeit with some differences. vMPH induced several general synaptic, neurotransmitter, and nerve impulse-related processes, whereas vLDX seemed to modulate neural processes more specific to ADHD, such as GABAergic inhibitory synapses and regulation of the reward system. While both drugs' models were linked to an effect over neuroinflammation and altered neural viability, vLDX had a significant impact on neurotransmitter imbalance and vMPH on circadian system deregulation. Among demographic characteristics, age and body mass index affected the efficacy of both virtual treatments, although the effect was more marked for vLDX. Regarding comorbidities, only depression negatively impacted both virtual drugs' efficacy mechanisms and, while that of vLDX were more affected by the co-treatment of tic disorders, the efficacy mechanisms of vMPH were disturbed by wide-spectrum psychiatric drugs. Our in silico results suggested that both drugs could have similar efficacy mechanisms as ADHD treatment in adult and pediatric populations and allowed raising hypotheses for their differential impact in specific patient groups, although these results require prospective validation for clinical translatability.
Collapse
Affiliation(s)
- José Ramón Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain
| | - Javier Quintero
- Servicio de Psiquiatría, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - Cristina Segú-Vergés
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | - Carmen Montoto
- Medical Department, Takeda Farmacéutica España, Madrid, Spain
| |
Collapse
|
9
|
Tharwat EK, Abdelaty AO, Abdelrahman AI, Elsaeed H, Elgohary A, El-Feky AS, Ebrahim YM, Sakraan A, Ismail HA, Khadrawy YA, Aboul Ezz HS, Noor NA, Fahmy HM, Mohammed HS, Mohammed FF, Radwan NM, Ahmed NA. Evaluation of the therapeutic potential of cerebrolysin and/or lithium in the male Wistar rat model of Parkinson's disease induced by reserpine. Metab Brain Dis 2023; 38:1513-1529. [PMID: 36847968 PMCID: PMC10185619 DOI: 10.1007/s11011-023-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and represents a challenge for clinicians. The present study aims to investigate the effects of cerebrolysin and/or lithium on the behavioral, neurochemical and histopathological alterations induced by reserpine as a model of PD. The rats were divided into control and reserpine-induced PD model groups. The model animals were further divided into four subgroups: rat PD model, rat PD model treated with cerebrolysin, rat PD model treated with lithium and rat PD model treated with a combination of cerebrolysin and lithium. Treatment with cerebrolysin and/or lithium ameliorated most of the alterations in oxidative stress parameters, acetylcholinesterase and monoamines in the striatum and midbrain of reserpine-induced PD model. It also ameliorated the changes in nuclear factor-kappa and improved the histopathological picture induced by reserpine. It could be suggested that cerebrolysin and/or lithium showed promising therapeutic potential against the variations induced in the reserpine model of PD. However, the ameliorating effects of lithium on the neurochemical, histopathological and behavioral alterations induced by reserpine were more prominent than those of cerebrolysin alone or combined with lithium. It can be concluded that the antioxidant and anti-inflammatory effects of both drugs played a significant role in their therapeutic potency.
Collapse
Affiliation(s)
- Engy K Tharwat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed O Abdelaty
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | | | - Ayatallah Elgohary
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Amena S El-Feky
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa Sakraan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Hossam A Ismail
- Biophysics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Center, Dokki, Egypt
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Nasr M Radwan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nawal A Ahmed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Bravo J, Magalhães C, Andrade EB, Magalhães A, Summavielle T. The impact of psychostimulants on central and peripheral neuro-immune regulation: a scoping review of cytokine profiles and their implications for addiction. Front Cell Neurosci 2023; 17:1109611. [PMID: 37305435 PMCID: PMC10251407 DOI: 10.3389/fncel.2023.1109611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
It is now well-accepted that psychostimulants act on glial cells causing neuroinflammation and adding to the neurotoxic effects of such substances. Neuroinflammation can be described as an inflammatory response, within the CNS, mediated through several cytokines, reactive oxygen species, chemokines and other inflammatory markers. These inflammatory players, in particular cytokines, play important roles. Several studies have demonstrated that psychostimulants impact on cytokine production and release, both centrally and at the peripheral level. Nevertheless, the available data is often contradictory. Because understanding how cytokines are modulated by psychoactive substances seems crucial to perspective successful therapeutic interventions, here, we conducted a scoping review of the available literature. We have focused on how different psychostimulants impact on the cytokine profile. Publications were grouped according to the substance addressed (methamphetamine, cocaine, methylphenidate, MDMA or other amphetamines), the type of exposure and period of evaluation (acute, short- or long-term exposure, withdrawal, and reinstatement). Studies were further divided in those addressing central cytokines, circulating (peripheral) levels, or both. Our analysis showed that the classical pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were those more investigated. The majority of studies have reported increased levels of these cytokines in the central nervous system after acute or repeated drug. However, studies investigating cytokine levels during withdrawal or reinstatement have shown higher variability in their findings. Although we have identified fewer studies addressing circulating cytokines in humans, the available data suggest that the results may be more robust in animal models than in patients with problematic drug use. As a major conclusion, an extensive use of arrays for relevant cytokines should be considered to better determine which cytokines, upon the classical ones, may be involved in the progression from episodic use to the development of addiction. A concerted effort is still necessary to address the link between peripheral and central immune players, including from a longitudinal perspective. Until there, the identification of new biomarkers and therapeutic targets to envision personalized immune-based therapeutics will continue to be unlikely.
Collapse
Affiliation(s)
- Joana Bravo
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| | - Catarina Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Elva B. Andrade
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
- Immunobiology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
| | - Teresa Summavielle
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
11
|
Lithium Biological Action Mechanisms after Ischemic Stroke. Life (Basel) 2022; 12:life12111680. [DOI: 10.3390/life12111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lithium is a source of great scientific interest because although it has such a simple structure, relatively easy-to-analyze chemistry, and well-established physical properties, the plethora of effects on biological systems—which influence numerous cellular and molecular processes through not entirely explained mechanisms of action—generate a mystery that modern science is still trying to decipher. Lithium has multiple effects on neurotransmitter-mediated receptor signaling, ion transport, signaling cascades, hormonal regulation, circadian rhythm, and gene expression. The biochemical mechanisms of lithium action appear to be multifactorial and interrelated with the functioning of several enzymes, hormones, vitamins, and growth and transformation factors. The widespread and chaotic marketing of lithium salts in potions and mineral waters, always at inadequate concentrations for various diseases, has contributed to the general disillusionment with empirical medical hypotheses about the therapeutic role of lithium. Lithium salts were first used therapeutically in 1850 to relieve the symptoms of gout, rheumatism, and kidney stones. In 1949, Cade was credited with discovering the sedative effect of lithium salts in the state of manic agitation, but frequent cases of intoxication accompanied the therapy. In the 1960s, lithium was shown to prevent manic and also depressive recurrences. This prophylactic effect was first demonstrated in an open-label study using the “mirror” method and was later (after 1970) confirmed by several placebo-controlled double-blind studies. Lithium prophylaxis was similarly effective in bipolar and also unipolar patients. In 1967, the therapeutic value of lithemia was determined, included in the range of 0.5–1.5 mEq/L. Recently, new therapeutic perspectives on lithium are connected with improved neurological outcomes after ischemic stroke. The effects of lithium on the development and maintenance of neuroprotection can be divided into two categories: short-term effects and long-term effects. Unfortunately, the existing studies do not fully explain the lithium biological action mechanisms after ischemic stroke.
Collapse
|
12
|
Quintero J, Gutiérrez-Casares JR, Álamo C. Molecular Characterisation of the Mechanism of Action of Stimulant Drugs Lisdexamfetamine and Methylphenidate on ADHD Neurobiology: A Review. Neurol Ther 2022; 11:1489-1517. [PMID: 35951288 DOI: 10.1007/s40120-022-00392-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset neurodevelopmental disorder characterised by persistent inattention, hyperactivity and impulsivity. Moreover, ADHD is commonly associated with other comorbid diseases (depression, anxiety, bipolar disorder, etc.). The ADHD symptomatology interferes with subject function and development. The treatment of ADHD requires a multidisciplinary approach based on a combination of non-pharmacological and pharmacological treatments with the aim of ameliorating the symptomatology; among first-line pharmacological treatments are stimulants [such as methylphenidate (MPH) and lisdexamfetamine dimesylate (LDX)]. In this review we explored recent ADHD- and stimulants-related literature, with the aim of compiling available descriptions of molecular pathways altered in ADHD, and molecular mechanisms of current first-line stimulants MPH and LDX. While conducting the narrative review, we applied structured search strategies covering PubMed/MEDLINE database and performed handsearching of reference lists on the results of those searches. The aetiology and pathophysiology of ADHD are incompletely understood; both genetic and environmental factors have been associated with the disorder and its grade of burden, and also the relationship between the molecular mechanisms of pharmacological treatments and their clinical implications. The lack of comprehensive understanding of the underlying molecular pathology makes both the diagnosis and treatment difficult. Few published studies evaluating molecular data on the mechanism of action (MoA) of MPH and LDX on ADHD are available and most of them are based on animal models. Further studies are necessary to improve the knowledge of ADHD pathophysiology and how the MoAs of MPH and LDX differentially modulate ADHD pathophysiology and control ADHD symptomatology.
Collapse
Affiliation(s)
- Javier Quintero
- Servicio de Psiquiatría y Salud Mental, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - José R Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain.
| | - Cecilio Álamo
- Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Kanazawa LKS, Radulski DR, Pereira GS, Prickaerts J, Schwarting RKW, Acco A, Andreatini R. Andrographolide blocks 50-kHz ultrasonic vocalizations, hyperlocomotion and oxidative stress in an animal model of mania. J Psychiatr Res 2021; 139:91-98. [PMID: 34058655 DOI: 10.1016/j.jpsychires.2021.05.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023]
Abstract
In rats, lisdexamfetamine (LDX) induces manic-like behaviors such as hyperlocomotion and increases in appetitive 50-kHz ultrasonic vocalizations (USV), which are prevented by antimanic drugs, such as lithium. Inhibition of glycogen synthase kinase 3 beta (GSK3β) and antioxidant activity have been associated with antimanic effects. Thus, the aim of the present study was to evaluate the possible antimanic-like effects of andrographolide (ANDRO), a GSK3β inhibitor, on LDX-induced hyperlocomotion and 50-kHz USV increases. In addition, the effect of ANDRO was studied on LDX-induced oxidative stress. Lithium was used as positive control. Adult Wistar rats were treated with vehicle, lithium (100 mg/kg i.p., daily) or ANDRO (2 mg/kg i.p., 3 times a week) for 21 days. On the test day, either 10 mg/kg LDX or saline was administered i.p. and USV and locomotor activity were recorded. LDX administration increased the number of 50-kHz calls, as well as locomotor activity. Repeated treatment with lithium or ANDRO prevented these effects of LDX on 50-kHz USV and locomotor activity. LDX increased lipid peroxidation (LPO) levels in rat striatum and both lithium and ANDRO prevented this effect. LPO levels in rat striatum were positively correlated with increases in 50-kHz USV emission as well as hyperlocomotion. In conclusion, the present results indicate that ANDRO has antimanic-like effects, which may be mediated by its antioxidant properties.
Collapse
Affiliation(s)
- Luiz K S Kanazawa
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Débora R Radulski
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Gabriela S Pereira
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Rainer K W Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology, and Center for Mind, Brain, and Behavior (CMBB), Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Alexandra Acco
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Roberto Andreatini
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil.
| |
Collapse
|
14
|
Cadoná FC, de Souza DV, Fontana T, Bodenstein DF, Ramos AP, Sagrillo MR, Salvador M, Mota K, Davidson CB, Ribeiro EE, Andreazza AC, Machado AK. Açaí (Euterpe oleracea Mart.) as a Potential Anti-neuroinflammatory Agent: NLRP3 Priming and Activating Signal Pathway Modulation. Mol Neurobiol 2021; 58:4460-4476. [PMID: 34021869 DOI: 10.1007/s12035-021-02394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Neurological disorders have been demonstrated to be associated with mitochondrial dysfunction. This impairment may lead to oxidative stress and neuroinflammation, specifically promoted by NLRP3 expression. Açaí (Euterpe oleracea Mart.) has been studied in this field, since it presents important biological activities. We investigated açaí extract's anti-neuroinflammatory capacity, through NLRP3 inflammasome modulation. Microglia (EOC 13.31) were exposed to LPS and nigericin, as agents of inflammatory induction, and treated with açaí extract. Additionally, we used lithium (Li) as an anti-inflammatory control. Three different experiment models were conducted: (1) isolated NLRP3 priming and activation signals; (2) combined NLRP3 priming and activation signals followed by açaí extract as a therapeutic agent; and (3) combined NLRP3 priming and activation signals with açaí extract as a preventive agent. Cells exposed to 0.1 µg/mL of LPS presented high proliferation and increased levels of NO, and ROS, while 0.1 µg/mL of açaí extract was capable to reduce cellular proliferation and recover levels of NO and ROS. Primed and activated cells presented increased levels of NLRP3, caspase-1, and IL-1β, while açaí, Li, and orientin treatments reversed this impairment. We found that açaí, Li, and orientin were effective prophylactic treatments. Preventative treatment with Li and orientin was unable to avoid overexpression of IL-1β compared to the positive control. However, orientin downregulated NLRP3 and caspase-1. Lastly, primed and activated cells impaired ATP production, which was prevented by pre-treatment with açaí, Li, and orientin. In conclusion, we suggest that açaí could be a potential agent to treat or prevent neuropsychiatric diseases related to neuroinflammation.
Collapse
Affiliation(s)
- Francine Carla Cadoná
- Graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, RS, Brazil
| | - Diulie Valente de Souza
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | - Tuyla Fontana
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| | - David Frederick Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | | | - Mirian Salvador
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Kennya Mota
- Third Age Open University Foundation, University of Amazonas State, Manaus, AM, Brazil
| | | | - Euler Esteves Ribeiro
- Third Age Open University Foundation, University of Amazonas State, Manaus, AM, Brazil
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Alencar Kolinski Machado
- Graduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil
- Laboratory of Cell Culture and Genetics, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
15
|
Szczepankiewicz D, Celichowski P, Kołodziejski PA, Pruszyńska-Oszmałek E, Sassek M, Zakowicz P, Banach E, Langwiński W, Sakrajda K, Nowakowska J, Socha M, Bukowska-Olech E, Pawlak J, Twarowska-Hauser J, Nogowski L, Rybakowski JK, Szczepankiewicz A. Transcriptome Changes in Three Brain Regions during Chronic Lithium Administration in the Rat Models of Mania and Depression. Int J Mol Sci 2021; 22:1148. [PMID: 33498969 PMCID: PMC7865310 DOI: 10.3390/ijms22031148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Lithium has been the most important mood stabilizer used for the treatment of bipolar disorder and prophylaxis of manic and depressive episodes. Despite long use in clinical practice, the exact molecular mechanisms of lithium are still not well identified. Previous experimental studies produced inconsistent results due to different duration of lithium treatment and using animals without manic-like or depressive-like symptoms. Therefore, we aimed to analyze the gene expression profile in three brain regions (amygdala, frontal cortex and hippocampus) in the rat model of mania and depression during chronic lithium administration (2 and 4 weeks). Behavioral changes were verified by the forced swim test, open field test and elevated maze test. After the experiment, nucleic acid was extracted from the frontal cortex, hippocampus and amygdala. Gene expression profile was done using SurePrint G3 Rat Gene Expression whole transcriptome microarrays. Data were analyzed using Gene Spring 14.9 software. We found that chronic lithium treatment significantly influenced gene expression profile in both mania and depression models. In manic rats, chronic lithium treatment significantly influenced the expression of the genes enriched in olfactory and taste transduction pathway and long non-coding RNAs in all three brain regions. We report here for the first time that genes regulating olfactory and taste receptor pathways and long non-coding RNAs may be targeted by chronic lithium treatment in the animal model of mania.
Collapse
Affiliation(s)
- Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paweł A. Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Przemysław Zakowicz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (P.Z.); (J.P.); (J.T.-H.)
| | - Ewa Banach
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute, 02-093 Warsaw, Poland;
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (W.L.); (K.S.); (J.N.)
| | - Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (W.L.); (K.S.); (J.N.)
| | - Joanna Nowakowska
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (W.L.); (K.S.); (J.N.)
| | - Magdalena Socha
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.S.); (E.B.-O.)
| | - Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.S.); (E.B.-O.)
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (P.Z.); (J.P.); (J.T.-H.)
| | - Joanna Twarowska-Hauser
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (P.Z.); (J.P.); (J.T.-H.)
| | - Leszek Nogowski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (P.A.K.); (E.P.-O.); (M.S.); (L.N.)
| | - Janusz K. Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (W.L.); (K.S.); (J.N.)
| |
Collapse
|