1
|
Chrobak AA, Siwek M. Drugs with glutamate-based mechanisms of action in psychiatry. Pharmacol Rep 2024; 76:1256-1271. [PMID: 39333460 PMCID: PMC11582293 DOI: 10.1007/s43440-024-00656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Psychopharmacotherapy of major psychiatric disorders is mostly based on drugs that modulate serotonergic, dopaminergic, or noradrenergic neurotransmission, either by inhibiting their reuptake or by acting as agonists or antagonists on specific monoamine receptors. The effectiveness of this approach is limited by a significant delay in the therapeutic mechanism and self-perpetuating growth of treatment resistance with a consecutive number of ineffective trials. A growing number of studies suggest that drugs targeting glutamate receptors offer an opportunity for rapid therapeutic effect that may overcome the limitations of monoaminergic drugs. In this article, we present a review of glutamate-modulating drugs, their mechanism of action, as well as preclinical and clinical studies of their efficacy in treating mental disorders. Observations of the rapid, robust, and long-lasting effects of ketamine and ketamine encourages further research on drugs targeting glutamatergic transmission. A growing number of studies support the use of memantine and minocycline in major depressive disorder and schizophrenia. Amantadine, zinc, and Crocus sativus extracts yield the potential to ameliorate depressive symptoms in patients with affective disorders. Drugs with mechanisms of action based on glutamate constitute a promising pharmacological group in the treatment of mental disorders that do not respond to standard methods of therapy. However, further research is needed on their efficacy, safety, dosage, interactions, and side effects, to determine their optimal clinical use.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501, Kraków, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika 21A, 31-501, Kraków, Poland.
| |
Collapse
|
2
|
Yasmeen Z, Khan MA, Ahmad I, Ullah F, Awan B, Akram MT, Khan MR. Molecular docking, derivatization, characterization and biological assays of amantadine. Future Med Chem 2024; 16:1853-1863. [PMID: 39119743 PMCID: PMC11486214 DOI: 10.1080/17568919.2024.2385294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Derivatization has been tremendously utilized in the field of drug discovery for optimizing the pharmacological properties and improving safety, efficacy and selectivity.Methodology: Schiff's bases (AD1-AD11) are synthesized through amantadine condensation with different aldehydes and ketones. Fourier transform infrared, 1H NMR, 13C NMR, TLC, liquid chromatography mass spectrometry analysis, in silico studies, molecular docking and antiviral activity through hemagglutinin test were performed for evaluation of new compounds.Results: AD2, 3 and 9-11 showed greater antiviral activity than the parent drug. Among all derivatives, AD2 and AD3 exhibited good potential against α-amylase while AD7 and AD10 showed stronger inhibition against α-glucosidase.Conclusion: So, it is concluded that the most potent derivatives can be used as lead compounds in novel drug design of antiviral antidiabetic agents.
Collapse
Affiliation(s)
- Zarmeena Yasmeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Irshad Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Farhat Ullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Breena Awan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Toseef Akram
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
3
|
Shejul PP, Doshi GM. Glutamate Receptors and C-ABL Inhibitors: A New Therapeutic Approach for Parkinson's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:22-44. [PMID: 38273763 DOI: 10.2174/0118715249268627231206115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024]
Abstract
Parkinson's disease (PD) is the second-most prevalent central nervous system (CNS) neurodegenerative condition. Over the past few decades, suppression of BCR-Abelson tyrosine kinase (c-Abl), which serves as a marker of -synuclein aggregation and oxidative stress, has shown promise as a potential therapy target in PD. c-Abl inhibition has the potential to provide neuroprotection against PD, as shown by experimental results and the first-in-human trial, which supports the strategy in bigger clinical trials. Furthermore, glutamate receptors have also been proposed as potential therapeutic targets for the treatment of PD since they facilitate and regulate synaptic neurotransmission throughout the basal ganglia motor system. It has been noticed that pharmacological manipulation of the receptors can change normal as well as abnormal neurotransmission in the Parkinsonian brain. The review study contributes to a comprehensive understanding of the approach toward the role of c-Abl and glutamate receptors in Parkinson's disease by highlighting the significance and urgent necessity to investigate new pharmacotherapeutic targets. The article covers an extensive insight into the concept of targeting, pathophysiology, and c-Abl interaction with α-synuclein, parkin, and cyclin-dependent kinase 5 (Cdk5). Furthermore, the concepts of Nmethyl- D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPA) receptor, and glutamate receptors are discussed briefly. Conclusion: This review article focuses on in-depth literature findings supported by an evidence-based discussion on pre-clinical trials and clinical trials related to c-Abl and glutamate receptors that act as potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Priya P Shejul
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
4
|
Kostina-Bednarz M, Płonka J, Barchanska H. Metabolic profiling to evaluate the impact of amantadine and rimantadine on the secondary metabolism of a model organism. Sci Rep 2023; 13:16822. [PMID: 37798340 PMCID: PMC10555991 DOI: 10.1038/s41598-023-43540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolic profiling offers huge potential to highlight markers and mechanisms in support of toxicology and pathology investigations during drug development. The main objective was to modify therapy with adamantane derivatives: amantadine and rimantadine, to increase their bioavailability and evaluate the influence of such therapy on drug metabolism using Saccharomyces cerevisiae as the model organism. In this study, the profile of endogenous metabolites of a model organism was measured and interpreted to provide an opportunity to investigate changes induced by treatment with amantadine and rimantadine. It was found that resveratrol supplementation synergistically enhanced the effects of amantadine treatment and increased rimantadine metabolism, potentially reducing side effects. The fingerprinting strategy was used as an efficient technique for qualitatively evaluating and monitoring changes in the profiles of endogenous components and their contents in a model organism. Chemometric tools were employed to find marker compounds that can be defined as characteristic indicators of a pharmacological response to a therapeutic intervention. An improved understanding of the mechanisms involved in drug effect and an increased ability to predict individual variations in the drug response of organisms will improve the treatment process and the development of new therapies.
Collapse
Affiliation(s)
- Marianna Kostina-Bednarz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| |
Collapse
|
5
|
Madhaw G, Gupta R, Dhamija P, Kumar N. A Randomized, Open Label, Exploratory Trial Comparing Efficacy of Amantadine and Ropinirole in Restless Legs Syndrome. Sleep Sci 2023; 16:174-182. [PMID: 37425973 PMCID: PMC10325843 DOI: 10.1055/s-0043-1770810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Objective Amantadine has both anti-glutamatergic and dopaminergic action and may improve restless legs syndrome (RLS). We compared the efficacy and adverse-effect profile of amantadine and ropinirole in RLS. Methods In this randomized, open-label, 12-week flexible-dose exploratory study, RLS patients with international RLS study group severity scale score (IRLSS) > 10 were randomized to receive either amantadine(100-300mg/day) or ropinirole (0.5-2mg/day). Drug dose was increased until week-6 if IRLSS failed to improve by ≥10% of previous visit score. IRLSS change from baseline at week-12 was the primary outcome. Secondary outcomes included change in RLS-related quality of life (RLS-QOL) and insomnia severity index (ISI), along with clinical-global-impression of change/improvement (CGI-I), and proportion of patients with adverse-effects and resulting discontinuation. Results Twenty-four patients received amantadine and 22 received ropinirole. Both groups had a significant effect for visit*treatment arm (F (2.19,68.15) =4.35;P = 0.01). With a similar baseline IRLSS, both intention-to-treat (ITT) and per-protocol analyses revealed comparable IRLSS until week-8, with ropinirole appearing superior from week-10 to week-12 (week-12 IRLSS, amantadine vs ropinirole:17.0 ± 5.7 vs 9.0 ± 4.4;P < 0.001). ITT analysis at week-12 showed comparable proportion of responders (≥10% IRLSS reduction) in both groups (P = 0.10). Both drugs improved sleep and QOL, but week-12 scores favoured ropinirole [(ISI:14.4 ± 5.7 vs 9.4 ± 4.5; P = 0.001) ;(RLS-QOL:70.4 ± 17.9 vs 86.5 ± 9.8; P = 0.005)]. CGI-I at week-12 favoured ropinirole (Mann-Whitney U = 35.50, S. E = 23.05;P = 0.01). Four patients in amantadine and two in ropinirole group developed adverse effects, with resulting discontinuation in two patients on amantadine. Conclusions The present study reports equivalent reduction in RLS symptoms with both amantadine and ropinirole until week-8, with the latter being superior from week-10 onwards. Ropinirole was better tolerated.
Collapse
Affiliation(s)
- Govind Madhaw
- Department of Neurology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ravi Gupta
- Division of Sleep Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
- Department of Psychiatry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Puneet Dhamija
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Niraj Kumar
- Department of Neurology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
- Division of Sleep Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
6
|
Sun Y, An X, Jin D, Duan L, Zhang Y, Yang C, Duan Y, Zhou R, Zhao Y, Zhang Y, Kang X, Jiang L, Lian F. Model exploration for discovering COVID-19 targeted traditional Chinese medicine. Heliyon 2022; 8:e12333. [PMID: 36530927 PMCID: PMC9737519 DOI: 10.1016/j.heliyon.2022.e12333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/15/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In terms of treatment, a particularly targeted drug is needed to combat the COVID-19 pandemic. Although there are currently no specific drugs for COVID-19, traditional Chinese medicine(TCM) is clearly effective. It is recommended that through data analysis and mining of TCM cases (expert experience) and population evidence (RCT and cohort studies), core prescriptions for various efficacy can be obtained. Starting from a multidimensional model of regulating immunity, improving inflammation, and protecting multiple organs, this paper constructs a multidimensional model of targeted drug discovery, integrating molecular, cellular, and animal efficacy evaluation. Through functional activity testing, biophysical detection of compound binding to target proteins, multidimensional pharmacodynamic evaluation systems of cells (Vero E6, Vero, Vero81, Huh7, and caca2) and animals (mice infected with the new coronavirus, rhesus macaques, and hamsters), the effectiveness of effective preparations was evaluated, and various efficacy effects including lung moisturizing, dehumidification and detoxification were obtained. Using modern technology, it is now possible to understand how the immune system is controlled, how inflammation is reduced, and how various organs are protected. Complete early drug characterization and finally obtain effective targeted TCM. This article provides a demonstration resource for the development of new drugs specifically for TCM.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Liyun Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Rongrong Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Yiru Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing 100053, China,Corresponding author.
| |
Collapse
|
7
|
Miyata S, Ishino Y, Shimizu S, Tohyama M. Involvement of inflammatory responses in the brain to the onset of major depressive disorder due to stress exposure. Front Aging Neurosci 2022; 14:934346. [PMID: 35936767 PMCID: PMC9354609 DOI: 10.3389/fnagi.2022.934346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial disease affected by several environmental factors. Although several potential onset hypotheses have been identified, the molecular mechanisms underlying the pathogenesis of this disorder remain unclear. Several recent studies have suggested that among many environmental factors, inflammation and immune abnormalities in the brain or the peripheral tissues are associated with the onset of MDDs. Furthermore, several stress-related hypotheses have been proposed to explain the onset of MDDs. Thus, inflammation or immune abnormalities can be considered stress responses that occur within the brain or other tissues and are regarded as one of the mechanisms underlying the stress hypothesis of MDDs. Therefore, we introduce several current advances in inflammation studies in the brain that might be related to the pathophysiology of MDD due to stress exposure in this review.
Collapse
Affiliation(s)
- Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- *Correspondence: Shingo Miyata
| | - Yugo Ishino
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kindai University, Osaka, Japan
- Osaka Prefectural Hospital Organization, Osaka, Japan
| |
Collapse
|
8
|
Lazarova M, Tancheva L, Chayrov R, Tzvetanova E, Alexandrova A, Popatanasov A, Uzunova D, Stefanova M, Stankova I, Kalfin R. Tyrosinyl-amantadine: A New Amantadine Derivative With an Ameliorative Effect in a 6-OHDA Experimental Model of Parkinson's Disease in Rats. J Mol Neurosci 2022; 72:900-909. [PMID: 35091981 DOI: 10.1007/s12031-021-01964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
The neuroprotective capacity of newly synthesized amantadine derivative tyrosinyl-amantadine (Tyr-Am) with expected antiparkinsonian properties was evaluated in a 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Male Wistar rats were divided into the following groups: sham-operated (SO), striatal 6-OHDA-lesioned control group, 6-OHDA-lesioned rats pretreated for 6 days with Tyr-Am (16 mg/kg administered intraperitoneally, i.p.), and 6-OHDA-lesioned rats pretreated for 6 days with amantadine (40 mg/kg i.p.), used as a referent. On the first, second and third week post-lesion, the animals were subjected to some behavioral tests (apomorphine-induced rotation, rotarod, and passive avoidance test). The acetylcholinesterase (AChE) activity and key oxidative stress parameters including lipid peroxidation levels (LPO) and superoxide dismutase (SOD) were measured in brain homogenates. The results showed that the neuroprotective effect of Tyr-Am was comparable to that of amantadine, improving neuromuscular coordination and learning and memory performance even at a 2.5-fold lower dose. Tyr-Am demonstrated significant antioxidant properties via decreased LPO levels but had no effect on AChE activity. We can conclude that the newly synthesized amantadine derivative Tyr-Am demonstrated significant antiparkinsonian activity in a 6-OHDA experimental model.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria.
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Radoslav Chayrov
- Department of Chemistry, South-West University "Neofit Rilski", Ivan Mihailov St. 66, Blagoevgrad,, 2700, Bulgaria
| | - Elina Tzvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Andrey Popatanasov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria
| | - Ivanka Stankova
- Department of Chemistry, South-West University "Neofit Rilski", Ivan Mihailov St. 66, Blagoevgrad,, 2700, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Block 23, Sofia,, 1113, Bulgaria.,Faculty of Public Health, Healthcare and Sport, South-West University "Neofit Rilski", Ivan Mihailov St. 66, Blagoevgrad,, 2700, Bulgaria
| |
Collapse
|
9
|
de Abreu MS, Costa F, Giacomini ACVV, Demin KA, Zabegalov KN, Maslov GO, Kositsyn YM, Petersen EV, Strekalova T, Rosemberg DB, Kalueff AV. Towards Modeling Anhedonia and Its Treatment in Zebrafish. Int J Neuropsychopharmacol 2021; 25:293-306. [PMID: 34918075 PMCID: PMC9017771 DOI: 10.1093/ijnp/pyab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Mood disorders, especially depression, are a major cause of human disability. The loss of pleasure (anhedonia) is a common, severely debilitating symptom of clinical depression. Experimental animal models are widely used to better understand depression pathogenesis and to develop novel antidepressant therapies. In rodents, various experimental models of anhedonia have already been developed and extensively validated. Complementing rodent studies, the zebrafish (Danio rerio) is emerging as a powerful model organism to assess pathobiological mechanisms of affective disorders, including depression. Here, we critically discuss the potential of zebrafish for modeling anhedonia and studying its molecular mechanisms and translational implications.
Collapse
Affiliation(s)
- Murilo S de Abreu
- School of Pharmacy, Southwest University, Chongqing, China,Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil,Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Fabiano Costa
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil,Graduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Drug Screening Platform, School of Pharmacy, Southwest University, Chongqing, China,Ural Federal University, Ekaterinburg, Russia,Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Gleb O Maslov
- Ural Federal University, Ekaterinburg, Russia,Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Yuriy M Kositsyn
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Tatiana Strekalova
- Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maasticht, the Netherlands,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov 1st Moscow State Medical University, Moscow, Russia,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil,Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China,Drug Screening Platform, School of Pharmacy, Southwest University, Chongqing, China,Ural Federal University, Ekaterinburg, Russia,Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia,Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia,Novosibirsk State University, Novosibisk, Russia,Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia,Correspondence: Allan V. Kalueff, PhD, School of Pharmacy, Southwest University, Chongqing, China ()
| |
Collapse
|
10
|
Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, Lorzadeh S, Kotfis K, Ghavami S, Łos MJ. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat 2021; 59:100794. [PMID: 34991982 PMCID: PMC8654464 DOI: 10.1016/j.drup.2021.100794] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is one of the greatest threats to human health in the 21st century with more than 257 million cases and over 5.17 million deaths reported worldwide (as of November 23, 2021. Various agents were initially proclaimed to be effective against SARS-CoV-2, the etiological agent of COVID-19. Hydroxychloroquine, lopinavir/ritonavir, and ribavirin are all examples of therapeutic agents, whose efficacy against COVID-19 was later disproved. Meanwhile, concentrated efforts of researchers and clinicians worldwide have led to the identification of novel therapeutic options to control the disease including PAXLOVID™ (PF-07321332). Although COVID-19 cases are currently treated using a comprehensive approach of anticoagulants, oxygen, and antibiotics, the novel Pfizer agent PAXLOVID™ (PF-07321332), an investigational COVID-19 oral antiviral candidate, significantly reduced hospitalization time and death rates, based on an interim analysis of the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) randomized, double-blind study of non-hospitalized adult patients with COVID-19, who are at high risk of progressing to severe illness. The scheduled interim analysis demonstrated an 89 % reduction in risk of COVID-19-related hospitalization or death from any cause compared to placebo in patients treated within three days of symptom onset (primary endpoint). However, there still exists a great need for the development of additional treatments, as the recommended therapeutic options are insufficient in many cases. Thus far, mRNA and vector vaccines appear to be the most effective modalities to control the pandemic. In the current review, we provide an update on the progress that has been made since April 2020 in clinical trials concerning the effectiveness of therapies available to combat COVID-19. We focus on currently recommended therapeutic agents, including steroids, various monoclonal antibodies, remdesivir, baricitinib, anticoagulants and PAXLOVID™ summarizing the latest original studies and meta-analyses. Moreover, we aim to discuss other currently and previously studied agents targeting COVID-19 that either show no or only limited therapeutic activity. The results of recent studies report that hydroxychloroquine and convalescent plasma demonstrate no efficacy against SARS-CoV-2 infection. Lastly, we summarize the studies on various drugs with incoherent or insufficient data concerning their effectiveness, such as amantadine, ivermectin, or niclosamide.
Collapse
Affiliation(s)
- Sylwester Drożdżal
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Kacper Lechowicz
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Jarosław Przybyciński
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Shahrokh Lorzadeh
- Department of Molecular Genetics, Science and Research Branch, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| | - Marek J Łos
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland.
| |
Collapse
|
11
|
Nikitina IL, Gaisina GG. Neuropharmacological characteristics of antidepressant action of a new 3-substituted thietane-1,1-dioxide derivative. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.68560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Due to severe burden of depressive disorders and a low rate of remission in patients receiving antidepressant therapy, there is an urgent need for developing novel agents with antidepressant action and a fundamentally new mechanism of action. 3-ethoxythietane-1,1-dioxide (N-199/1) is a new molecule that showed significant antidepressant properties when administered intraperitoneally once or repeatedly. The aim of the present study was to investigate the mechanism of action of N-199/1, using reserpine test.
Materials and methods: N-199/1 (2 mg/kg and 4.86 mg/kg) and the reference drugs (imipramine and fluoxetine) were administered once intraperitoneally to outbred male mice 4 h (Experiment 1) and 18 h (Experiment 2) after a single intraperitoneal injection of reserpine (2.5 mg/kg). The severity of reserpine-induced symptoms (hypothermia, ptosis and akinesia) was assessed.
Results and discussion: N-199/1 potentiated reserpine-induced hypothermia at both doses and reduced ptosis at a dose of 2 mg/kg when administered 4 h after reserpine. N-199/1 increased the duration of reserpine akinesia at a dose of 2 mg/kg when administered 18 h after reserpine and at a dose of 4.86 mg/kg when administered 4 h after reserpine. The effect of N-199/1 resembled the effect of fluoxetine and was dose-dependent.
Conclusion: Based on the results obtained, it can be assumed that the antidepressant action of N-199/1 is due to its serotonin-positive properties, and probably the blockade of serotonin 5HT2A/2C receptors and/or α2-adrenergic receptors. The effect of N-199/1 is dose-dependent and resembles the effect of fluoxetine.
Graphical abstract:
Collapse
|
12
|
Lee PY, Lai YH, Liu PL, Liu CC, Su CC, Chiu FY, Cheng WC, Hsu SL, Cheng KC, Chiu LY, Kao TE, Lin CC, Chang YC, Wang SC, Li CY. Toxicity of amantadine hydrochloride on cultured bovine cornea endothelial cells. Sci Rep 2021; 11:18514. [PMID: 34531501 PMCID: PMC8445916 DOI: 10.1038/s41598-021-98005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
Amantadine hydrochloride (HCl) is commonly prescribed for treating influenza A virus infection and Parkinson's disease. Recently, several studies have indicated that the use of amantadine HCl is associated with corneal edema; however, the cytotoxic effect of amantadine HCl has not been investigated. In the present study, the effects of amantadine HCl on cell growth, proliferation, and apoptosis in bovine cornea endothelial cells, and in vitro endothelial permeability were examined. Results showed that lower doses of amantadine HCl do not affect cell growth (≤ 20 μΜ), whereas higher doses of amantadine HCl inhibits cell growth (≥ 50 μΜ), induces apoptosis (2000 μΜ), increases sub-G1 phase growth arrest (2000 μΜ), causes DNA damage (≥ 1000 μΜ), and induces endothelial hyperpermeability (≥ 1000 μΜ) in bovine cornea endothelial cells; additionally, we also found that amantadine HCl attenuates the proliferation (≥ 200 μΜ) and arrests cell cycle at G1 phase (≥ 200 μΜ) in bovine cornea endothelial cells. In the present study, we measured the cytotoxic doses of amantadine HCl on cornea endothelial cells, which might be applied in evaluating the association of corneal edema.
Collapse
Affiliation(s)
- Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Chih Liu
- Department of Ophthalmology, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Chia-Cheng Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Fang-Yen Chiu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, and Research Center for Tumor Medical Science, and Drug Development Center, China Medical University, Taichung, 40402, Taiwan
| | - Shiuh-Liang Hsu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, 81267, Taiwan
| | - Li-Yi Chiu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
| | - Tzu-En Kao
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Ching Lin
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
13
|
In Vitro Inhibition of Zika Virus Replication with Amantadine and Rimantadine Hydrochlorides. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus in which human infection became relevant during recent outbreaks in Latin America due to its unrecognized association with fetal neurological disorders. Currently, there are no approved effective antivirals or vaccines for the treatment or prevention of ZIKV infections. Amantadine and rimantadine are approved antivirals used against susceptible influenza A virus infections that have been shown to have antiviral activity against other viruses, such as dengue virus (DENV). Here, we report the in vitro effectiveness of both amantadine and rimantadine hydrochlorides against ZIKV replication, resulting in a dose-dependent reduction in viral titers of a ZIKV clinical isolate and two different ZIKV reference strains. Additionally, we demonstrate similar in vitro antiviral activity of these drugs against DENV-1 and yellow fever virus (YFV), although at higher drug concentrations for the latter. ZIKV replication was inhibited at drug concentrations well below cytotoxic levels of both compounds, as denoted by the high selectivity indexes obtained with the tested strains. Further work is absolutely needed to determine the potential clinical use of these antivirals against ZIKV infections, but our results suggest the existence of a highly conserved mechanism across flavivirus, susceptible to be blocked by modified more specific adamantane compounds.
Collapse
|
14
|
Morrow K, Choi S, Young K, Haidar M, Boduch C, Bourgeois JA. Amantadine for the treatment of childhood and adolescent psychiatric symptoms. Proc AMIA Symp 2021; 34:566-570. [PMID: 34456474 DOI: 10.1080/08998280.2021.1925827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
This retrospective study examined clinical parameters associated with amantadine treatment of psychiatric symptoms in children. A total of 297 pediatric patients were prescribed amantadine and met study criteria to assess clinical responses and medication outcomes. More than 62% of patients experienced clinically significant symptom control and 83% achieved at least maintenance symptom control, while 11% discontinued amantadine for nonresponse and 6% stopped amantadine because of side effects. Among patients previously receiving other psychotropic medication, 42% and 28% of patients fully discontinued second- or third-generation antipsychotics or antidepressants, respectively. Patients responsive to amantadine who discontinued or reduced antipsychotic dose experienced a significant reduction in body mass index. Amantadine appears be an efficacious and safe alternative for treatment of a broad set of psychiatric symptoms in children and adolescents. Specifically, it may serve as an effective adjunct to stimulants for attention deficit/hyperactivity disorder-related symptoms and appears to be a safer alternative to second- or third-generation antipsychotics.
Collapse
Affiliation(s)
- Kyle Morrow
- Department of Psychiatry, Baylor Scott & White Health, Temple, Texas.,Texas A&M University College of Medicine, Temple, Texas
| | - Sun Choi
- Department of Psychiatry, Baylor Scott & White Health, Temple, Texas.,Texas A&M University College of Medicine, Temple, Texas
| | - Keith Young
- Department of Psychiatry, Baylor Scott & White Health, Temple, Texas.,Texas A&M University College of Medicine, Temple, Texas
| | - Makram Haidar
- Department of Psychiatry, Baylor Scott & White Health, Temple, Texas.,Texas A&M University College of Medicine, Temple, Texas
| | - Cassandra Boduch
- Department of Psychiatry, Baylor Scott & White Health, Temple, Texas.,Texas A&M University College of Medicine, Temple, Texas
| | - James A Bourgeois
- Department of Psychiatry, Baylor Scott & White Health, Temple, Texas.,Texas A&M University College of Medicine, Temple, Texas
| |
Collapse
|
15
|
Raupp-Barcaro IFM, da Silva Dias IC, Meyer E, Vieira JCF, da Silva Pereira G, Petkowicz AR, de Oliveira RMW, Andreatini R. Involvement of dopamine D 2 and glutamate NMDA receptors in the antidepressant-like effect of amantadine in mice. Behav Brain Res 2021; 413:113443. [PMID: 34216648 DOI: 10.1016/j.bbr.2021.113443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
The present study investigated the pharmacological mechanisms of the antidepressant-like effects of amantadine in mice and their influence on hippocampal neurogenesis. To improve the translational validity of preclinical results, reproducibility across laboratories and replication in other animal models and species are crucial. Single amantadine administration at doses of 50 and 75 mg/kg resulted in antidepressant-like effects in mice in the tail suspension test (TST), reflected by an increase in immobility time. The effects of amantadine were seen at doses that did not alter locomotor activity. The tyrosine hydroxylase inhibitor α-methyl-ρ-tyrosine did not influence the anti-immobility effect of amantadine in the TST. Pretreatment with the α1 adrenergic receptor antagonist prazosin, β adrenergic receptor antagonist propranolol, α2 adrenergic receptor antagonist yohimbine, and α2 adrenergic receptor agonist clonidine did not alter the antidepressant-like effect of amantadine. However, amantadine's effect was blocked by the dopamine D2 receptor antagonist haloperidol and glutamate receptor agonist N-methyl-D-aspartate (NMDA). Repeated amantadine administration (50 mg/kg) also exerted an antidepressant-like effect, paralleled by an increase in hippocampal neurogenesis. The present results demonstrate that the antidepressant-like effects of amantadine may be mediated by its actions on D2 and NMDA receptors and likely involve hippocampal neurogenesis.
Collapse
Affiliation(s)
- Inara Fernanda Misiuta Raupp-Barcaro
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Isabella Caroline da Silva Dias
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Jeane Cristina Fonseca Vieira
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Giovana da Silva Pereira
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Arthur Ribeiro Petkowicz
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil.
| |
Collapse
|
16
|
Movement as a Positive Modulator of Aging. Int J Mol Sci 2021; 22:ijms22126278. [PMID: 34208002 PMCID: PMC8230594 DOI: 10.3390/ijms22126278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
The aging of human populations, including those in Europe, is an indisputable fact. The challenge for the future is not simply prolonging human life at any cost or by any means but rather extending self-sufficiency and quality of life. Even in the most advanced societies, the eternal questions remain. Who will take care of the older generations? Will adult children’s own circumstances be sufficient to support family members as they age? For a range of complex reasons, including socioeconomic conditions, adult children are often unable or unwilling to assume responsibility for the care of older family members. For this reason, it is imperative that aging adults maintain their independence and self-care for as long as possible. Movement is an important part of self-sufficiency. Moreover, movement has been shown to improve patients’ clinical status. At a time when the coronavirus pandemic is disrupting the world, older people are among the most vulnerable. Our paper explores current knowledge and offers insights into the significant benefits of movement for the elderly, including improved immunity. We discuss the biochemical processes of aging and the counteractive effects of exercise and endogenous substances, such as vitamin D.
Collapse
|
17
|
Cheng SW, Li JX, Chien YC, Chang JPC, Shityakov S, Huang SY, Galecki P, Su KP. Genetic Variations of Ionotropic Glutamate Receptor Pathways on Interferon-α-induced Depression in Patients with Hepatitis C Viral Infection. Brain Behav Immun 2021; 93:16-22. [PMID: 33161164 DOI: 10.1016/j.bbi.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE The most supportive evidence of the inflammation theory of depression is that up to one-third of patients with Hepatitis C virus infection (HCV) develop clinical depressive episodes during interferon-α (IFN-α) therapy. As glutamate-mediated excitotoxicity has been found to be a consequence of excessive inflammation and a pathogenic mechanism of depression, it is plausible to investigate genes on ionotropic glutamate receptor pathways. OBJECTIVE To identify the at-risk genetic variations on ionotropic glutamate receptor pathways for interferon-α-induced depression. METHOD We assessed 291 patients with chronic HCV undergoing IFN-α therapy and analyzed the single nucleotide polymorphisms (SNPs) in genes related to ionotropic glutamate receptors in this prospective case-control study. Patients who developed IFN-α-induced depression anytime during the treatment were defined as the case group, while those who did not were defined as the control group. Genomic DNA was extracted from peripheral blood and analyzed by Affymetrix TWB array. Allelic and haplotype association tests were conducted using χ2 tests to assess the difference in allele and haplotype frequencies between cases and controls. Additionally, we performed 5000 permutations to control gene-wide family-wise error rates and create empirical p-values. Stratified analyses were then done to control for confounders and adjust odds ratios for our significant SNPs. We also did an additional stratified analysis to re-assess genes with near-significant SNPs (empirical p-value=0.05-0.10), employing Bonferroni correction with the effective number of independent tests to control gene-wide family-wise error rates. RESULTS The minor and major allele frequencies of rs7542 (empirical p-value=0.0310) in MAPK3, rs3026685 (empirical p-value=0.0378) in PICK1, rs56005409 (empirical p-value=0.0332) in PRKCA, rs12914792 (empirical p-value=0.0096), rs17245773 (empirical p-value=0.0340) in RASGRF1, and rs78387863 (empirical p-value=0.0086), rs74365480 (empirical p-value=0.0200) in RASGRF2 were found significantly different between cases and controls. Haplotype association tests also revealed one significant haplotype in PRKCA (empirical p-value=0.0200) and one in RASGRF1 (empirical p-value=0.0048). Stratified analyses showed no signs of confounders for most of our significant SNPs, except for rs78387863 in RASGRF2. After a re-assessment of our near-significant genes by stratified analyses, two SNPs in GRIN2B turned significant. CONCLUSIONS This study provided supportive evidence of the involvement of the RAS/RAF/mitogen-activated protein kinase (MAPK) signaling pathway and glutamate ionotropic receptor AMPA type subunit 2(GluR2) transportation in the pathogenesis of IFN-α-induced depression.
Collapse
Affiliation(s)
- Szu-Wei Cheng
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Jing-Xing Li
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chuan Chien
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jane Pei-Chen Chang
- College of Medicine, China Medical University, Taichung, Taiwan; Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sergey Shityakov
- College of Medicine, China Medical University, Taichung, Taiwan; Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Bioinformatics, Würzburg University, Würzburg, Germany
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Kuan-Pin Su
- College of Medicine, China Medical University, Taichung, Taiwan; Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
18
|
Danysz W, Dekundy A, Scheschonka A, Riederer P. Amantadine: reappraisal of the timeless diamond-target updates and novel therapeutic potentials. J Neural Transm (Vienna) 2021; 128:127-169. [PMID: 33624170 PMCID: PMC7901515 DOI: 10.1007/s00702-021-02306-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
The aim of the current review was to provide a new, in-depth insight into possible pharmacological targets of amantadine to pave the way to extending its therapeutic use to further indications beyond Parkinson's disease symptoms and viral infections. Considering amantadine's affinities in vitro and the expected concentration at targets at therapeutic doses in humans, the following primary targets seem to be most plausible: aromatic amino acids decarboxylase, glial-cell derived neurotrophic factor, sigma-1 receptors, phosphodiesterases, and nicotinic receptors. Further three targets could play a role to a lesser extent: NMDA receptors, 5-HT3 receptors, and potassium channels. Based on published clinical studies, traumatic brain injury, fatigue [e.g., in multiple sclerosis (MS)], and chorea in Huntington's disease should be regarded potential, encouraging indications. Preclinical investigations suggest amantadine's therapeutic potential in several further indications such as: depression, recovery after spinal cord injury, neuroprotection in MS, and cutaneous pain. Query in the database http://www.clinicaltrials.gov reveals research interest in several further indications: cancer, autism, cocaine abuse, MS, diabetes, attention deficit-hyperactivity disorder, obesity, and schizophrenia.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Andrzej Dekundy
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Astrid Scheschonka
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department Psychiatry, University of Southern Denmark Odense, Vinslows Vey 18, 5000, Odense, Denmark.
| |
Collapse
|
19
|
Possibility of a New Indication for Amantadine in the Treatment of Bipolar Depression-Case Series Study. Pharmaceuticals (Basel) 2020; 13:ph13100326. [PMID: 33096753 PMCID: PMC7589301 DOI: 10.3390/ph13100326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023] Open
Abstract
Bipolar disorder is a chronic and remitting mental illness. Antidepressants are not effective in treating acute bipolar depression, and antipsychotic drugs used in the treatment of bipolar depression cause frequent side effects. This situation justifies the search for new drugs as well as the repurposing of drugs used in other indications. In an open and naturalistic serious case study, 4 patients diagnosed with bipolar I disorder, chronically treated with a mood stabilizer, in whom at least two antidepressants were ineffective in the depressive phase, were treated with amantadine. The woman received 100 mg/day and 3 men received the target dose of 200 mg/day. All patients treated with amantadine improved their depressive symptoms after 1 week of treatment. None of them experienced side effects or manic switch. To reduce the risk of a manic switch, the treatment with amantadine was discontinued 2 weeks after the improvement of depressive symptoms, and no recurrence of depressive symptoms was observed. Amantadine may be a further therapeutic option for the treatment of acute bipolar depression. The drug in this indication may act quickly and be well tolerated. Confirmation of the antidepressant efficacy of amantadine in this indication requires replication of the results and conducting clinical trials.
Collapse
|
20
|
Marinescu I, Marinescu D, Mogoantă L, Efrem IC, Stovicek PO. SARS-CoV-2 infection in patients with serious mental illness and possible benefits of prophylaxis with Memantine and Amantadine. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:1007-1022. [PMID: 34171050 PMCID: PMC8343601 DOI: 10.47162/rjme.61.4.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients with serious mental illness are a high-risk category of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Patients with schizophrenia are not participatory and have increased mortality and morbidity, patients with dementia cannot be cared for while depression, anxiety, bipolar tubing are associated with low immune status. Social stress is amplified by social isolation, amplifying depression and the mechanisms of decreased immunity. Hygiene measures and prophylactic behavior are impossible to put into practice in conditions of chronic mental illness. In coronavirus disease 2019 (COVID-19), the risk for severe development is associated with the presence of comorbidities and immune system deficiency. Prothrombotic status, cytokine storm and alveolar destruction are mechanisms that aggravate the evolution of patients, especially in the context in which they have dysfunction of the autonomic system. The activity of proinflammatory cytokines is accentuated by hyperglutamatergia, which potentiates oxidative stress and triggers the mechanisms of neural apoptosis by stimulating microglial activation. Activation of M1-type microglia has an important role in pathogenesis of major psychiatric disorders, such as major depression, schizophrenia or bipolar disorder, and may associate hippocampal atrophy and disconnection of cognitive structures. Memantine and Amantadine, N-methyl-D-aspartate (NMDA) glutamate receptor inhibitors, have demonstrated, through their pharmacological profile, psychotropic effects but also antiviral properties. In the conditions of the COVID-19 pandemic, based on these arguments, we suggest that they can be associated with the therapy with the basic psychotropics, Memantine or Amantadine, for the control of neuropsychiatric symptoms but also as adjuvants with antiviral action.
Collapse
Affiliation(s)
- Ileana Marinescu
- Doctoral School, Department of Internal Medicine, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, Romania; ,
| | | | | | | | | |
Collapse
|
21
|
Ruberto VL, Jha MK, Murrough JW. Pharmacological Treatments for Patients with Treatment-Resistant Depression. Pharmaceuticals (Basel) 2020; 13:ph13060116. [PMID: 32512768 PMCID: PMC7345023 DOI: 10.3390/ph13060116] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Over a third of patients with major depressive disorder (MDD) do not have an adequate response to first-line antidepressant treatments, i.e., they have treatment-resistant depression (TRD). These patients tend to have a more severe course of illness and are at an increased risk of suicide. Next step treatment options for patients with TRD, include switching to a different antidepressant, combining more than one antidepressant, or augmenting an antidepressant with another (non-antidepressant) medication. It is unclear which of these treatment approaches should be applied to a given patient, and in what order. Due to this ambiguity, comparing antidepressants and augmentation agents on the basis of their efficacy, tolerability, and speed of symptom relief would be beneficial for clinicians. To accomplish this, a systematic search was conducted following PRISMA guidelines. Only randomized controlled trials were included in this qualitative synthesis, resulting in 66 articles. This review identified several effective pharmaco-therapeutic strategies that are currently available for patients with TRD. Ketamine and esketamine appear to be effective for the treatment of TRD. Augmentation with certain second generation antipsychotics, such as quetiapine or aripiprazole is likewise effective, and may be preferred over switching to antidepressant monotherapy. While the combination of olanzapine and fluoxetine was one of the first pharmacotherapy approved for TRD, and its use may be limited by metabolic side-effects. Other effective strategies include augmentation with lithium, liothyronine (T3), lamotrigine, or combination of antidepressants including bupropion, tricyclics, or mirtazapine. There is insufficient research to demonstrate the efficacy of ziprasidone or levothyroxine (T4). A shared decision-making approach is recommended to guide treatment selection to address each patient’s individual needs.
Collapse
|
22
|
Abstract
This comprehensive review discusses clinical studies of patients following brain injuries (traumatic, acquired, or stroke), who have been treated with amantadine or memantine. Both amantadine and memantine are commonly used in the acute rehabilitation setting following brain injuries, despite their lack of FDA-approval for neuro-recovery. Given the broad utilization of such agents, there is a need to review the evidence supporting this common off-label prescribing. The purpose of this review is to describe the mechanisms of action for memantine and amantadine, as well as to complete a comprehensive review of the clinical uses of these agents. We included 119 original, clinical research articles from NCBI Medline, published before 2019. We focused on the domains of neuroplasticity, functional recovery, motor recovery, arousal, fatigue, insomnia, behavior, agitation, and cognition. Most of the existing research supporting the use of amantadine and memantine in recovery from brain injuries was done in very small populations, limiting the significance of conclusions. While most studies are positive; small effect sizes are usually reported, or populations are subject to bias. Furthermore, evidence is so limited that this review includes research regarding both acute and chronic acquired brain injury populations. Fortunately, reported short-term side effects generally are modest, and stop soon after amantadine/memantine is discontinued. However, responses are inconsistent, and the phenotype of responders remains elusive.
Collapse
Affiliation(s)
- Heather M Ma
- Physical Medicine and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Ross D Zafonte
- Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Regulation of BDNF-TrkB Signaling and Potential Therapeutic Strategies for Parkinson's Disease. J Clin Med 2020; 9:jcm9010257. [PMID: 31963575 PMCID: PMC7019526 DOI: 10.3390/jcm9010257] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/19/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase receptor type B (TrkB) are widely distributed in multiple regions of the human brain. Specifically, BDNF/TrkB is highly expressed and activated in the dopaminergic neurons of the substantia nigra and plays a critical role in neurophysiological processes, including neuro-protection and maturation and maintenance of neurons. The activation as well as dysfunction of the BDNF-TrkB pathway are associated with neurodegenerative diseases. The expression of BDNF/TrkB in the substantia nigra is significantly reduced in Parkinson's Disease (PD) patients. This review summarizes recent progress in the understanding of the cellular and molecular roles of BNDF/TrkB signaling and its isoform, TrkB.T1, in Parkinson's disease. We have also discussed the effects of current therapies on BDNF/TrkB signaling in Parkinson's disease patients and the mechanisms underlying the mutation-mediated acquisition of resistance to therapies for Parkinson's disease.
Collapse
|