1
|
Moura LMDF, da Costa AC, Müller C, Silva-Filho RDO, Almeida GM, da Silva AA, Capellesso ES, Cunha FN, Teixeira MB. Morpho-Physiological Traits and Oil Quality in Drought-Tolerant Raphanus sativus L. Used for Biofuel Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:1583. [PMID: 38931015 PMCID: PMC11207979 DOI: 10.3390/plants13121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Raphanus sativus L. is a potential source of raw material for biodiesel fuel due to the high oil content in its grains. In Brazil, this species is cultivated in the low rainfall off-season, which limits the productivity of the crop. The present study investigated the effects of water restriction on the physiological and biochemical responses, production components, and oil quality of R. sativus at different development stages. The treatments consisted of 100% water replacement (control), 66%, and 33% of field capacity during the phenological stages of vegetative growth, flowering, and grain filling. We evaluated characteristics of water relations, gas exchange, chlorophyll a fluorescence, chloroplast pigment, proline, and sugar content. The production components and chemical properties of the oil were also determined at the end of the harvest cycle. Drought tolerance of R. sativus was found to be mediated primarily during the vegetative growth stage by changes in photosynthetic metabolism, stability of photochemical efficiency, increased proline concentrations, and maintenance of tissue hydration. Grain filling was most sensitive to water limitation and showed a reduction in yield and oil content. However, the chemical composition of the oil was not altered by the water deficit. Our data suggest that R. sativus is a drought-tolerant species.
Collapse
Affiliation(s)
- Luciana Minervina de Freitas Moura
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
| | - Alan Carlos da Costa
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
- Centro de Excelência em Bioinsumos (CEBIO), Rua 88, 30—Setor Sul, Goiânia 74085-010, GO, Brazil
| | - Caroline Müller
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
| | - Robson de Oliveira Silva-Filho
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
| | - Gabriel Martins Almeida
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
| | - Adinan Alves da Silva
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil; (L.M.d.F.M.); (C.M.); (R.d.O.S.-F.); (G.M.A.); (A.A.d.S.)
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
| | - Elivane Salete Capellesso
- Laboratório de Ecologia Vegetal, Universidade Federal do Paraná—Centro Politécnico, 100, Curitiba 81530-000, PR, Brazil;
| | - Fernando Nobre Cunha
- Laboratório de Hidráulica e Irrigação, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil;
| | - Marconi Batista Teixeira
- Centro de Excelência em Agricultura Exponencial (CEAGRE), Rua das Turmalinas, 44—Vila Maria, Rio Verde 75905-360, GO, Brazil;
- Laboratório de Hidráulica e Irrigação, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil;
| |
Collapse
|
2
|
Tiwari PN, Tiwari S, Sapre S, Babbar A, Tripathi N, Tiwari S, Tripathi MK. Screening and Selection of Drought-Tolerant High-Yielding Chickpea Genotypes Based on Physio-Biochemical Selection Indices and Yield Trials. Life (Basel) 2023; 13:1405. [PMID: 37374187 DOI: 10.3390/life13061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Chickpea production is seriously hampered by drought stress, which could be a great threat in the future for food security in developing countries. The present investigation aimed to screen the drought-tolerant response of forty desi chickpea genotypes against drought stress through various physio-biochemical selection indices and yield-attributing traits. Principle component-based biplot analysis recognized PG205, JG2016-44, JG63, and JG24 as tolerant genotypes based on physiological selection indices. These genotypes retained higher relative water content, stomatal conductance, internal CO2 concentration, and photosynthetic rate. ICC4958, JG11, JAKI9218, JG16, JG63, and PG205 were selected as tolerant genotypes based on biochemical selection indices. These genotypes sustained higher chlorophyll, sugar and proline content with enhanced antioxidant enzyme activities. With respect to yield trials, JAKI9218, JG11, JG16, and ICC4958 had higher seed yield per plant, numbers of pods, and biological yield per plant. Finally, JG11, JAKI9218, ICC4958, JG16, JG63, and PG205 were selected as tolerant genotypes based on cumulative physio-biochemical selection indices and yield response. These identified drought-tolerant genotypes may be further employed in climate-smart chickpea breeding programs for sustainable production under a changing climate scenario.
Collapse
Affiliation(s)
- Prakash N Tiwari
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Sharad Tiwari
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Swapnil Sapre
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Anita Babbar
- Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Niraj Tripathi
- Directorate of Research, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Sushma Tiwari
- Department of Plant Molecular Biology & Biotechnology, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Plant Molecular Biology & Biotechnology, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| |
Collapse
|
3
|
Li J, Zafar S, Javaid A, Perveen S, Hasnain Z, Ihtisham M, Abbas A, Usman M, El-Sappah AH, Abbas M. Zinc Nanoparticles (ZnNPs): High-Fidelity Amelioration in Turnip (Brassica rapa L.) Production under Drought Stress. SUSTAINABILITY 2023; 15:6512. [DOI: 10.3390/su15086512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The detrimental effects of drought have adverse impacts on the crop yield as global climatic changes put unusual pressure on water resources. The challenge of attaining water security is key for the sustainable development of crops. Zinc (Zn2+) is an important nutrient that helps to alleviate drought stress by modulating the growth and yield of crops. Recently, zinc nanoparticles (ZnNPs) have been used as a novel strategy for the fertilization of crops. This study was specifically developed to observe the comparative effects of ZnNPs and conventional zinc sulfate (ZnSO4) at diverse concentration levels (0.01%, 0.05%, and 0.1%) that could effectively decrease the injurious effect of drought stress on turnip plants. In experiments on the golden turnip variety, drought stress caused a significant reduction in all growth and biochemical attributes, and increased antioxidant enzymatic activity. In a comparison with the conventional fertilizer ZnSO4, the foliar application of 0.1% ZnNPs significantly improved plant height, biomass, root/turnip length, turnip diameter, antioxidant defense system, secondary metabolites, and photosynthetic pigments in the leaves under drought stress. Based on the collected results, it is suggested that the foliar application of ZnNPs, instead of ZnSO4, under drought stress is helpful in increasing the growth and yield of turnip plants.
Collapse
Affiliation(s)
- Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Sara Zafar
- Botany Department, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Ayesha Javaid
- Botany Department, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Shagufta Perveen
- Botany Department, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Zuhair Hasnain
- Department of Agronomy, PMAS Arid Agriculture University, Attock Campus, Attock 43600, Punjab, Pakistan
| | - Muhammad Ihtisham
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Usman
- Department of Biochemistry and Biotechnology, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan 66000, Punjab, Pakistan
| | - Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| |
Collapse
|
4
|
Saed-Moucheshi A, Mozafari AA. Alternate gene expression profiling of monoterpenes in Hymenocrater longiflorus as a novel pharmaceutical plant under water deficit. Sci Rep 2022; 12:4084. [PMID: 35260740 PMCID: PMC8904481 DOI: 10.1038/s41598-022-08062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Hymenocrater longiflorus (surahalala) is a wild plant species with potential pharmaceutical and ornamental interest. To date, the genomics of this plant is unknown and the gene expression profiling of the genes related to its metabolite has never been studied before. In order to study the responses of in vitro-grown surahalala plants to abiotic stresses and the differential expression of the genes related to its essential oils under exogenous proline application; three levels of PEG600 (0, 10, and 20%) and five levels of proline (0, 5, 10, 15, and 20 µm) were combined in the culture media. Thus, water deficit increased oxidants levels and decreased fresh weight of surahalala tissues, whereas addition of proline up to 15 µm was able to relatively compensate the negative effect of water deficit. Contrarily, high proline level (20 µm) had a negative effect on surahalala plants probably due to the stress simulation (nutrition) under high proline concentration. In addition, the best combination for achieving highest essential oils content was 10 µm proline plus 10% PEG. The expressional profiling of the genes TPS27, L3H, TPS2, TPS1, OMT and GDH3 were successfully carried out and their involvement in 1,8-cineole, carvone, α-pinene, thymol, estragole and β-Citronellol biosynthesis, respectively, was verified. In addition, our results indicated that these genes could also be involved in the synthesis of other metabolites under water deficit condition.
Collapse
Affiliation(s)
- Armin Saed-Moucheshi
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Mozafari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|