1
|
Danso Ofori A, Zheng T, Titriku JK, Appiah C, Xiang X, Kandhro AG, Ahmed MI, Zheng A. The Role of Genetic Resistance in Rice Disease Management. Int J Mol Sci 2025; 26:956. [PMID: 39940724 PMCID: PMC11817016 DOI: 10.3390/ijms26030956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/04/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Rice (Oryza sativa) is a crucial staple crop for global food security, particularly in Asia. However, rice production faces significant challenges from various diseases that can cause substantial yield losses. This review explores the role of genetic resistance in rice disease management, focusing on the molecular mechanisms underlying plant-pathogen interactions and strategies for developing resistant varieties. The paper discusses qualitative and quantitative resistance, emphasizing the importance of resistance (R) genes, defense-regulator genes, and quantitative trait loci (QTLs) in conferring broad-spectrum disease resistance. Gene-for-gene relationships in rice-pathogen interactions are examined, particularly for Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae. The review also covers recent advancements in breeding techniques, including marker-assisted selection, genetic engineering, and genome editing technologies like CRISPR-Cas. These approaches offer promising avenues for enhancing disease resistance in rice while maintaining yield potential. Understanding and exploiting genetic resistance mechanisms is crucial for developing durable and broad-spectrum disease-resistant rice varieties, essential for ensuring sustainable rice production and global food security in the face of evolving pathogen threats and changing environmental conditions.
Collapse
Affiliation(s)
- Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - John Kwame Titriku
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.K.T.); (C.A.)
| | - Charlotte Appiah
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.K.T.); (C.A.)
| | - Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Irfan Ahmed
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Wang J, Jian A, Wan H, Lei D, Zhou J, Zhu S, Ren Y, Lin Q, Lei C, Wang J, Zhao Z, Guo X, Zhang X, Cheng Z, Tao D, Jiang L, Zhao Z, Wan J. Genetic characterization and fine mapping of qHMS4 responsible for pollen sterility in hybrids between Oryza sativa L. and Oryza glaberrima Steud. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:47. [PMID: 37313516 PMCID: PMC10248710 DOI: 10.1007/s11032-022-01306-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
African cultivated rice (Oryza glaberrima Steud) contains many favorable genes for tolerance to biotic and abiotic stresses and F1 hybrids between Asian cultivated rice (Oryza sativa L.) show strong heterosis. However, the hybrids of two species often exhibit hybrid sterility. Here, we identified a male sterility locus qHMS4 on chromosome 4 (Chr.4), which induces pollen semi-sterility in F1 hybrids of japonica rice variety Dianjingyou1 (DJY1) and a near-isogenic line (NIL) carrying a Chr.4 segment from Oryza glaberrima accession IRGC101854. Cytological observations indicated that non-functional pollen grains produced by the hybrids and lacking starch accumulation abort at the late bicellular stage. Molecular genetic analysis revealed distorted segregation in male gametogenesis carrying qHMS4 allele from DJY1. Fine-mapping of qHMS4 using an F2 population of 22,500 plants delimited qHMS4 to a region of 110-kb on the short arm of Chr.4. Sequence analysis showed that the corresponding sequence region in DJY1 and Oryza glaberrima were 114-kb and 323-kb, respectively, and that the sequence homology was very poor. Gene prediction analysis identified 16 and 46 open reading frames (ORFs) based on the sequences of DJY1 and O. glaberrima, respectively, among which 3 ORFs were shared by both. Future map-based cloning of qHMS4 will help to understand the underlying molecular mechanism of hybrid sterility between the two cultivated rice species. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01306-8.
Collapse
Affiliation(s)
- Jian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Anqi Jian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hua Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dekun Lei
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiawu Zhou
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|