1
|
Lolla R, Srinath A, Govindarajan M, Murugan M, Perumal Venkatesan E, Hasan N. Effect of Infill Patterns with Machine Learning Techniques on the Tensile Properties of Polylactic Acid-Based Ceramic Materials with Fused Filament Fabrication. ACS OMEGA 2023; 8:24786-24796. [PMID: 37483243 PMCID: PMC10357419 DOI: 10.1021/acsomega.2c08164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/15/2023] [Indexed: 07/25/2023]
Abstract
The field of additive manufacturing is quickly evolving from prototyping to manufacturing. Researchers are looking for the best parameters to boost mechanical strength as the demand for three-dimensional (3D) printers grows. The goal of this research is to find the best infill pattern settings for a polylactic acid (PLA)-based ceramic material with a universal testing machine; the impact of significant printing considerations was investigated. An X-ray diffractometer and energy-dispersive X-ray spectroscopy with an attachment of scanning electron microscopy were used to investigate the crystalline structure and microstructure of PLA-based ceramic materials. Tensile testing of PLA-based ceramics using a dog bone specimen was printed with various patterns, as per ASTM D638-10. The cross pattern had a high strength of 16.944 MPa, while the tri-hexagon had a peak intensity of 16.108 MPa. Cross3D and cubic subdivisions have values of 4.802 and 4.803 MPa, respectively. Incorporating the machine learning concepts in this context is to predict the optimal infill pattern for robust strength and other mechanical properties of the PLA-based ceramic model. It helps to rally the precision and efficacy of the procedure by automating the job that would entail substantial physical effort. Implementing the machine learning technique to this work produced the output as cross and tri-hexagon are the efficient ones out of the 13 patterns compared.
Collapse
Affiliation(s)
- Ranganath Lolla
- Research
Scholar, Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Vijayawada, A.P. 520002, India
| | - Adusumilli Srinath
- Department
of Mechanical Engineering, Principal of Academics staff college, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Vijayawada, A.P. 520002, India
| | - Murali Govindarajan
- Department
of Mechanical Engineering, Koneru Lakshmaiah
Education Foundation, Vijayawada, Andhra Pradesh 520002, India
| | - Manickam Murugan
- Department
of Mechanical Engineering, Aditya College
of Engineering and Technology, Surampalem, Kakinada, Andhra Pradesh 533437, India
| | | | - Nasim Hasan
- Department
of Mechanical Engineering, Mechanical Engineering, Mattu University, Metu 524413, Ethiopia
| |
Collapse
|
2
|
Czyżewski W, Jachimczyk J, Hoffman Z, Szymoniuk M, Litak J, Maciejewski M, Kura K, Rola R, Torres K. Low-Cost Cranioplasty-A Systematic Review of 3D Printing in Medicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4731. [PMID: 35888198 PMCID: PMC9315853 DOI: 10.3390/ma15144731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 11/22/2022]
Abstract
The high cost of biofabricated titanium mesh plates can make them out of reach for hospitals in low-income countries. To increase the availability of cranioplasty, the authors of this work investigated the production of polymer-based endoprostheses. Recently, cheap, popular desktop 3D printers have generated sufficient opportunities to provide patients with on-demand and on-site help. This study also examines the technologies of 3D printing, including SLM, SLS, FFF, DLP, and SLA. The authors focused their interest on the materials in fabrication, which include PLA, ABS, PET-G, PEEK, and PMMA. Three-dimensional printed prostheses are modeled using widely available CAD software with the help of patient-specific DICOM files. Even though the topic is insufficiently researched, it can be perceived as a relatively safe procedure with a minimal complication rate. There have also been some initial studies on the costs and legal regulations. Early case studies provide information on dozens of patients living with self-made prostheses and who are experiencing significant improvements in their quality of life. Budget 3D-printed endoprostheses are reliable and are reported to be significantly cheaper than the popular counterparts manufactured from polypropylene polyester.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland; (W.C.); (K.T.)
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
| | - Jakub Jachimczyk
- Student Scientific Society, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Zofia Hoffman
- Student Scientific Society, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Michał Szymoniuk
- Student Scientific Association of Neurosurgery, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marcin Maciejewski
- Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Krzysztof Kura
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland; (W.C.); (K.T.)
| |
Collapse
|
3
|
Melleby AO, Romaine A, Aronsen JM, Veras I, Zhang L, Sjaastad I, Lunde IG, Christensen G. A novel method for high precision aortic constriction that allows for generation of specific cardiac phenotypes in mice. Cardiovasc Res 2018; 114:1680-1690. [DOI: 10.1093/cvr/cvy141] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Arne O Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Ioanni Veras
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|