1
|
Li DX, Yin LP, Song YQ, Shao NN, Zhu H, He CS, Sun JJ. KCNQ1 rs2237895 gene polymorphism increases susceptibility to type 2 diabetes mellitus in Asian populations. World J Diabetes 2024; 15:552-564. [PMID: 38591089 PMCID: PMC10999049 DOI: 10.4239/wjd.v15.i3.552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus (T2DM) is currently controversial. It is unknown whether this association can be gene realized across different populations. AIM To determine the association of KCNQ1 rs2237895 with T2DM and provide reliable evidence for genetic susceptibility to T2DM. METHODS We searched PubMed, Embase, Web of Science, Cochrane Library, Medline, Baidu Academic, China National Knowledge Infrastructure, China Biomedical Liter-ature Database, and Wanfang to investigate the association between KCNQ1 gene rs2237895 and the risk of T2DM up to January 12, 2022. Review Manager 5.4 was used to analyze the association of the KCNQ1 gene rs2237895 polymorphism with T2DM and to evaluate the publication bias of the selected literature. RESULTS Twelve case-control studies (including 11273 cases and 11654 controls) met our inclusion criteria. In the full population, allelic model [odds ratio (OR): 1.19; 95% confidence interval (95%CI): 1.09-1.29; P < 0.0001], recessive model (OR: 1.20; 95%CI: 1.11-1.29; P < 0.0001), dominant model (OR: 1.27. 95%CI: 1.14-1.42; P < 0.0001), and codominant model (OR: 1.36; 95%CI: 1.15-1.60; P = 0.0003) (OR: 1.22; 95%CI: 1.10-1.36; P = 0.0002) indicated that the KCNQ1 gene rs2237895 polymorphism was significantly correlated with susceptibility to T2DM. In stratified analysis, this association was confirmed in Asian populations: allelic model (OR: 1.25; 95%CI: 1.13-1.37; P < 0.0001), recessive model (OR: 1.29; 95%CI: 1.11-1.49; P = 0.0007), dominant model (OR: 1.35; 95%CI: 1.20-1.52; P < 0.0001), codominant model (OR: 1.49; 95%CI: 1.22-1.81; P < 0.0001) (OR: 1.26; 95%CI: 1.16-1.36; P < 0.0001). In non-Asian populations, this association was not significant: Allelic model (OR: 1.06, 95%CI: 0.98-1.14; P = 0.12), recessive model (OR: 1.04; 95%CI: 0.75-1.42; P = 0.83), dominant model (OR: 1.06; 95%CI: 0.98-1.15; P = 0.15), codominant model (OR: 1.08; 95%CI: 0.82-1.42; P = 0.60. OR: 1.15; 95%CI: 0.95-1.39; P = 0.14). CONCLUSION KCNQ1 gene rs2237895 was significantly associated with susceptibility to T2DM in an Asian population. Carriers of the C allele had a higher risk of T2DM. This association was not significant in non-Asian populations.
Collapse
Affiliation(s)
- Dong-Xu Li
- First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Li-Ping Yin
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yu-Qi Song
- First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Nan-Nan Shao
- School of Clinical Medicine, Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Huan Zhu
- First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Chen-Sen He
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Jiang-Jie Sun
- School of Health Care Management, Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
2
|
Evidence that the pituitary gland connects type 2 diabetes mellitus and schizophrenia based on large-scale trans-ethnic genetic analyses. J Transl Med 2022; 20:501. [PMID: 36329495 PMCID: PMC9632150 DOI: 10.1186/s12967-022-03704-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Previous studies on European (EUR) samples have obtained inconsistent results regarding the genetic correlation between type 2 diabetes mellitus (T2DM) and Schizophrenia (SCZ). A large-scale trans-ethnic genetic analysis may provide additional evidence with enhanced power. OBJECTIVE We aimed to explore the genetic basis for both T2DM and SCZ based on large-scale genetic analyses of genome-wide association study (GWAS) data from both East Asian (EAS) and EUR subjects. METHODS A range of complementary approaches were employed to cross-validate the genetic correlation between T2DM and SCZ at the whole genome, autosomes (linkage disequilibrium score regression, LDSC), loci (Heritability Estimation from Summary Statistics, HESS), and causal variants (MiXeR and Mendelian randomization, MR) levels. Then, genome-wide and transcriptome-wide cross-trait/ethnic meta-analyses were performed separately to explore the effective shared organs, cells and molecular pathways. RESULTS A weak genome-wide negative genetic correlation between SCZ and T2DM was found for the EUR (rg = - 0.098, P = 0.009) and EAS (rg =- 0.053 and P = 0.032) populations, which showed no significant difference between the EUR and EAS populations (P = 0.22). After Bonferroni correction, the rg remained significant only in the EUR population. Similar results were obtained from analyses at the levels of autosomes, loci and causal variants. 25 independent variants were firstly identified as being responsible for both SCZ and T2DM. The variants associated with the two disorders were significantly correlated to the gene expression profiles in the brain (P = 1.1E-9) and pituitary gland (P = 1.9E-6). Then, 61 protein-coding and non-coding genes were identified as effective genes in the pituitary gland (P < 9.23E-6) and were enriched in metabolic pathways related to glutathione mediated arsenate detoxification and to D-myo-inositol-trisphosphate. CONCLUSION Here, we show that a negative genetic correlation exists between SCZ and T2DM at the whole genome, autosome, locus and causal variant levels. We identify pituitary gland as a common effective organ for both diseases, in which non-protein-coding effective genes, such as lncRNAs, may be responsible for the negative genetic correlation. This highlights the importance of molecular metabolism and neuroendocrine modulation in the pituitary gland, which may be responsible for the initiation of T2DM in SCZ patients.
Collapse
|
3
|
Jiang HL, Du H, Deng YJ, Liang X. Effect of KCNQ1 rs2237892 polymorphism on the predisposition to type 2 diabetes mellitus: An updated meta-analysis. Diabetol Metab Syndr 2021; 13:75. [PMID: 34238370 PMCID: PMC8264960 DOI: 10.1186/s13098-021-00683-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Previous studies have analyzed the potential effect of KCNQ1 rs2237892 polymorphism on the predisposition to type 2 diabetes mellitus, but the findings are inconclusive and the subject of debate. The purpose of our study was to provide further insight into the potential association between KCNQ1 rs2237892 polymorphism and the risk of type 2 diabetes mellitus. METHODS In total, 50 articles (60 studies) with 77,276 cases and 76,054 controls were utilized in our analysis. The pooled odds ratio (OR), 95% confidence interval (95% CI), and p value were used to evaluate the significance of our findings. Funnel plots and Beggar's regression tests were utilized to determine the presence of publication bias. RESULTS Our meta-analysis results indicated that KCNQ1 rs2237892 polymorphism could be correlated with the risk of type 2 diabetes mellitus under the C allelic, recessive, and dominant genetic models (OR = 1.25, 95% 1.19-1.32, p < 0.001; OR = 1.50, 95% CI 1.34-1.68, p < 0.001; OR = 1.26, 95% CI 1.14-1.40, p < 0.001, respectively). Additionally, ethnicity analysis revealed that the source of control, case size, and Hardy-Weinberg Equilibrium status were correlated to the polymorphism in the three genetic models. CONCLUSIONS Our meta-analysis demonstrated significant evidence to support the association between KCNQ1 rs2237892 polymorphism and predisposition to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hong-Liang Jiang
- Department of Anorectal Medicine, Gaozhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Gaozhou, 525025, Guangdong, China
| | - Han Du
- Dermatology Department of Gaozhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 32 Maoming Avenue, Gaozhou, 525025, Guangdong, China.
| | - Ying-Jun Deng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xue Liang
- Department of Science and Education, Gaozhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Gaozhou, 525025, Guangdong, China
| |
Collapse
|
4
|
Rattanatham R, Settasatian N, Komanasin N, Kukongviriyapan U, Sawanyawisuth K, Intharaphet P, Senthong V, Settasatian C. Association of Combined TCF7L2 and KCNQ1 Gene Polymorphisms with Diabetic Micro- and Macrovascular Complications in Type 2 Diabetes Mellitus. Diabetes Metab J 2021; 45:578-593. [PMID: 33752320 PMCID: PMC8369220 DOI: 10.4093/dmj.2020.0101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Vascular complications are the major morbid consequences of type 2 diabetes mellitus (T2DM). The transcription factor 7-like 2 (TCF7L2), potassium voltage-gated channel subfamily Q member 1 (KCNQ1), and inwardly-rectifying potassium channel, subfamily J, member 11 gene (KCNJ11) are common T2DM susceptibility genes in various populations. However, the associations between polymorphisms in these genes and diabetic complications are controversial. This study aimed to investigate the effects of combined gene-polymorphisms within TCF7L2, KCNQ1, and KCNJ11 on vascular complications in Thai subjects with T2DM. METHODS We conducted a case-control study comprising 960 T2DM patients and 740 non-diabetes controls. Single nucleotide polymorphisms in TCF7L2, KCNQ1, and KCNJ11 were genotyped and evaluated for their association with diabetic vascular complications. RESULTS The gene variants TCF7L2 rs290487-T, KCNQ1 rs2237892-C, and KCNQ1 rs2237897-C were associated with increased risk of T2DM. TCF7L2 rs7903146-C, TCF7L2 rs290487-C, KCNQ1 rs2237892-T, and KCNQ1 rs2237897-T revealed an association with hypertension. The specific combination of risk-alleles that have effects on T2DM and hypertension, TCF7L2 rs7903146-C, KCNQ1 rs2237892-C, and KCNQ1 rs2237897-T, as genetic risk score (GRS), pronounced significant association with coronary artery disease (CAD), cumulative nephropathy and CAD, and cumulative microvascular and macrovascular complications (respective odds ratios [ORs] with 95% confidence interval [95% CI], comparing between GRS 2-3 and GRS 5-6, were 7.31 [2.03 to 26.35], 3.92 [1.75 to 8.76], and 2.33 [1.13 to 4.79]). CONCLUSION This study demonstrated, for the first time, the effect conferred by specific combined genetic variants in TCF7L2 and KCNQ1 on diabetic vascular complications, predominantly with nephropathy and CAD. Such a specific pattern of gene variant combination may implicate in the progression of T2DM and life-threatening vascular complications.
Collapse
Affiliation(s)
- Rujikorn Rattanatham
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nongnuch Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Nantarat Komanasin
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
- School of Medical Technology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Upa Kukongviriyapan
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Phongsak Intharaphet
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
- Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand
| | - Vichai Senthong
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Queen Sirikit Heart Center of the Northeast, Khon Kaen University, Khon Kaen, Thailand
| | - Chatri Settasatian
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Corresponding author: Chatri Settasatian https://orcid.org/0000-0002-2555-8700 Department of Pathology, Faculty of Medicine, Khon Kaen University, 123 Mittraphap Rd, Muang Khon Kaen District, Khon Kaen 40002, Thailand E-mail:
| |
Collapse
|
5
|
Yu XX, Liao MQ, Zeng YF, Gao XP, Liu YH, Sun W, Zhu S, Zeng FF, Ye YB. Associations of KCNQ1 Polymorphisms with the Risk of Type 2 Diabetes Mellitus: An Updated Meta-Analysis with Trial Sequential Analysis. J Diabetes Res 2020; 2020:7145139. [PMID: 32695830 PMCID: PMC7362295 DOI: 10.1155/2020/7145139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies have examined the role of the KQT-like subfamily Q member1 (KCNQ1) gene polymorphisms on the risk of type 2 diabetes mellitus (T2DM), but the findings are inconclusive. OBJECTIVE To examine the association between the KCNQ1 gene polymorphisms and the risk of T2DM using an updated meta-analysis with an almost tripled number of studies. METHODS Five electronic databases, such as PubMed and Embase, were searched thoroughly for relevant studies on the associations between seven most studied KCNQ1 gene polymorphisms, including rs2237892, rs2237897, rs2237895, rs2283228, rs231362, rs151290, and rs2074196, and T2DM risk up to September 14, 2019. The summary odds ratios (ORs) with their 95% confidence intervals (CIs) were applied to assess the strength of associations in the random-effects models. We used the trial sequential analysis (TSA) to measure the robustness of the evidence. RESULTS 49 publications including 55 case-control studies (68,378 cases and 66,673 controls) were finally enrolled. In overall analyses, generally, increased T2DM risk was detected for rs2237892, rs2237895, rs2283228, rs151290, and rs2074196, but not for rs231362 under all genetic models. The ORs and 95% CIs for allelic comparison were 1.23 (1.14-1.33) for rs2237892, 1.21 (1.16-1.27) for rs2237895, 1.27 (1.11-1.46) for rs2237897, 1.25 (1.09-1.42) for rs2283228, 1.14 (1.03-1.27) for rs151290, 1.31 (1.23-1.39) for rs2074196, and 1.16 (0.83, 1.61) for rs231362. Stratified analyses showed that associations for rs2237892, rs2237895, rs2283228, and rs151290 were more evident among Asians than Caucasians. TSA demonstrated that the evidence was sufficient for all polymorphisms in this study. The genotypes of the three SNPs (rs2237892, rs2283228, and rs231362) were significantly correlated with altered KCNQ1 gene expression. CONCLUSION This meta-analysis suggested that KCNQ1 gene polymorphisms (rs2237892, rs2283228, rs2237895, rs151290, and rs2074196) might be the susceptible factors for T2DM, especially among Asian population.
Collapse
Affiliation(s)
- Xiao-xuan Yu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Min-qi Liao
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Yu-fei Zeng
- Department of Obstetrics and Gynecology, Shangrao Fifth People's Hospital, Shangrao, Jiangxi 334000, China
| | - Xu-ping Gao
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Yan-hua Liu
- The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052 Henan, China
| | - Wei Sun
- Customs Comprehensive Laboratory, Baiyun International Airport Customs, Hengyi Road, Guangzhou, 510080 Guangdong, China
| | - Sui Zhu
- Department of Medical Statistics, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Fang-fang Zeng
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Yan-bin Ye
- Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
6
|
Afshardoost S, Sarhangi N, Afshari M, Aghaei Meybodi HR, Hasanzad M. The influence of a genetic variant in the KCNQ1 gene on type 2 diabetes mellitus development. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Fatima SS, Rehman R, Martins RS, Alam F, Ashraf M. Single nucleotide polymorphisms in Renalase and KCNQ1 genes and female infertility: A cross-sectional study in Pakistan. Andrologia 2019; 51:e13434. [PMID: 31579970 DOI: 10.1111/and.13434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023] Open
Abstract
A global increase in the incidence of subfertility is observed, and research suggests strong genetic influences that might restrict fertility directly or indirectly. It therefore becomes important to rule out the existence of genetic causes and counsel infertile couples before offering "Advanced Infertility Treatment Techniques." This cross-sectional study aimed to explore the association of KCNQ1 (rs2237895) and Renalase (rs2576178 and rs10887800) single nucleotide polymorphisms with different causes of infertility by analysing 508 fertile and 164 infertile women. Gene variant (AC/CC) of KCNQ1 rs2237895 showed a slight difference in the endometriosis group compared to the fertile group (p = .049), with the C allele showing a significant association with infertility overall (OR = 1.42 [1.100-1.833]; p < .0069). The variant AG/GG of Renalase rs2576178 was significantly associated with overall infertility (OR = 2.266; p < .001), with a strong G allele association with unexplained infertility OR = 2.796 (p = .002) that remained significant after adjusting for age and body mass index. Similarly, Renalase rs10887800 AG/GG and G allele showed significant association with both infertility due to polycystic ovarian syndrome and unexplained infertility. Expression of single nucleotide polymorphism rs2237895 and rs2576178 in both KCNQ1 and Renalase genes might be responsible for altering reproductive potential, hence leading to infertility in women.
Collapse
Affiliation(s)
- Syeda Sadia Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Rehana Rehman
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Faiza Alam
- Department of Physiology, University of Karachi, Karachi, Pakistan
| | - Mussarat Ashraf
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
8
|
Janicki PK, Eyileten C, Ruiz-Velasco V, Pordzik J, Czlonkowska A, Kurkowska-Jastrzebska I, Sugino S, Imamura Kawasawa Y, Mirowska-Guzel D, Postula M. Increased burden of rare deleterious variants of the KCNQ1 gene in patients with large‑vessel ischemic stroke. Mol Med Rep 2019; 19:3263-3272. [PMID: 30816480 DOI: 10.3892/mmr.2019.9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/30/2019] [Indexed: 11/06/2022] Open
Abstract
The impact of rare and damaging variants in genes associated with platelet function in large‑vessel ischemic stroke (LVIS) remains unknown. The aim of this study was to investigate the contribution of some of these variants to the genetic susceptibility to LVIS in Polish patients using a deep re‑sequencing of 54 selected genes, coding for proteins associated with altered platelet function. Targeted pooled re‑sequencing (Illumina HiSeq 2500) was performed on genomic DNA of 500 cases (patients with history of clinically proven diagnosis of LVIS) and 500 age‑, smoking status‑, and sex‑matched controls (no history of any type of stroke), and from the same population as patients with LVIS. After quality control and prioritization based on allele frequency and damaging probability, individual genotyping of all deleterious rare variants was performed in patients from the original cohort, and stratified to concomitant cardiac conditions differing between the study and stroke groups. We demonstrated a statistically significant increase in the number of rare and potentially damaging variants in some of the investigated genes in the LVIS pool (an increase in the genomic variants burden). Furthermore, we identified an association between LVIS and 6 rare functional and damaging variants in the Kv7.1 potassium channel gene (KCNQ1). The predicted functional properties (partial loss‑of function) for the three most damaging variants in KCNQ1 coding locus were further confirmed in vitro by analyzing the membrane potential changes in cell lines co‑transfected heterogeneously with human muscarinic type 1 receptor and wild‑type or mutated KCNQ1 cDNA constructs using fluorescence imaging plate reader. The study demonstrated an increased rare variants burden for 54 genes associated with platelet function, and identified a putative role for rare damaging variants in the KCNQ1 gene on LVIS susceptibility in the Polish population.
Collapse
Affiliation(s)
- Piotr K Janicki
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Justyna Pordzik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Anna Czlonkowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | | | - Shigekazu Sugino
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Marek Postula
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Schlauch KA, Kulick D, Subramanian K, De Meirleir KL, Palotás A, Lombardi VC. Single-nucleotide polymorphisms in a cohort of significantly obese women without cardiometabolic diseases. Int J Obes (Lond) 2019; 43:253-262. [PMID: 30120429 PMCID: PMC6365206 DOI: 10.1038/s41366-018-0181-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/10/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity is an important risk factor for the development of diseases such as diabetes mellitus, hypertension, and dyslipidemia; however, a small number of individuals with long-standing obesity do not present with these cardiometabolic diseases. Such individuals are referred to as metabolically healthy obese (MHO) and potentially represent a subgroup of the general population with a protective genetic predisposition to obesity-related diseases. We hypothesized that individuals who were metabolically healthy, but significantly obese (BMI ≥ 35 kg/m2) would represent a highly homogenous subgroup, with which to investigate potential genetic associations to obesity. We further hypothesized that such a cohort may lend itself well to investigate potential genotypes that are protective with respect to the development of cardiometabolic disease. SUBJECTS/METHODS In the present study, we implemented this novel selection strategy by screening 892 individuals diagnosed as Class 2 or Class 3 obese and identified 38 who presented no manifestations of cardiometabolic disease. We then assessed these subjects for single-nucleotide polymorphisms (SNPs) that associated with this phenotype. RESULTS Our analysis identified 89 SNPs that reach statistical significance (p < 1 × 10-5), some of which are associated with genes of biological pathways that influences dietary behavior; others are associated with genes previously linked to obesity and cardiometabolic disease as well as neuroimmune disease. This study, to the best of our knowledge, represents the first genetic screening of a cardiometabolically healthy, but significantly obese population.
Collapse
Affiliation(s)
- Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV, USA
- Desert Research Institute, Reno, NV, USA
| | | | | | | | - András Palotás
- Asklepios-Med, Szeged, Hungary.
- Kazan Federal University, Kazan, Russian Federation.
| | - Vincent C Lombardi
- Nevada Center for Biomedical Research, Reno, NV, USA.
- Department of Pathology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| |
Collapse
|