1
|
Singh S, Viswanath A, Chakraborty A, Narayanan N, Malipatil R, Jacob J, Mittal S, Satyavathi TC, Thirunavukkarasu N. Identification of key genes and molecular pathways regulating heat stress tolerance in pearl millet to sustain productivity in challenging ecologies. FRONTIERS IN PLANT SCIENCE 2024; 15:1443681. [PMID: 39239194 PMCID: PMC11374647 DOI: 10.3389/fpls.2024.1443681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Pearl millet is a nutri-cereal that is mostly grown in harsh environments, making it an ideal crop to study heat tolerance mechanisms at the molecular level. Despite having a better-inbuilt tolerance to high temperatures than other crops, heat stress negatively affects the crop, posing a threat to productivity gain. Hence, to understand the heat-responsive genes, the leaf and root samples of two contrasting pearl millet inbreds, EGTB 1034 (heat tolerant) and EGTB 1091 (heat sensitive), were subjected to heat-treated conditions and generated genome-wide transcriptomes. We discovered 13,464 differentially expressed genes (DEGs), of which 6932 were down-regulated and 6532 up-regulated in leaf and root tissues. The pairwise analysis of the tissue-based transcriptome data of the two genotypes demonstrated distinctive genotype and tissue-specific expression of genes. The root exhibited a higher number of DEGs compared to the leaf, emphasizing different adaptive strategies of pearl millet. A large number of genes encoding ROS scavenging enzymes, WRKY, NAC, enzymes involved in nutrient uptake, protein kinases, photosynthetic enzymes, and heat shock proteins (HSPs) and several transcription factors (TFs) involved in cross-talking of temperature stress responsive mechanisms were activated in the stress conditions. Ribosomal proteins emerged as pivotal hub genes, highly interactive with key genes expressed and involved in heat stress response. The synthesis of secondary metabolites and metabolic pathways of pearl millet were significantly enriched under heat stress. Comparative synteny analysis of HSPs and TFs in the foxtail millet genome demonstrated greater collinearity with pearl millet compared to proso millet, rice, sorghum, and maize. In this study, 1906 unannotated DEGs were identified, providing insight into novel participants in the molecular response to heat stress. The identified genes hold promise for expediting varietal development for heat tolerance in pearl millet and similar crops, fostering resilience and enhancing grain yield in heat-prone environments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Animikha Chakraborty
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Neha Narayanan
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Jinu Jacob
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Tara C Satyavathi
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| |
Collapse
|
2
|
Ruan Q, Bai X, Wang Y, Zhang X, Wang B, Zhao Y, Zhu X, Wei X. Regulation of endogenous hormone and miRNA in leaves of alfalfa (Medicago sativa L.) seedlings under drought stress by endogenous nitric oxide. BMC Genomics 2024; 25:229. [PMID: 38429670 PMCID: PMC10908014 DOI: 10.1186/s12864-024-10024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.
Collapse
Affiliation(s)
- Qian Ruan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaoming Bai
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Yizhen Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaofang Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
3
|
Tong C, Zhang Y, Shi F. Genome-wide identification and analysis of the NLR gene family in Medicago ruthenica. Front Genet 2023; 13:1088763. [PMID: 36704335 PMCID: PMC9871256 DOI: 10.3389/fgene.2022.1088763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Medicago ruthenica, important forage in the legume family, possesses high nutritional value and carries abundant tolerance genes. This study used whole-genome data of M. ruthenica to perform a genome-wide analysis of the nucleotide-binding site-leucine-rich repeat receptor (NLR) gene family, which is the largest family of plant disease resistance genes (R genes). A total of 338 NLR genes were identified in the M. ruthenica genome, including 160 typical genes that contained 80 coiled-coil (CC)-NBS-LRR (CNL) genes, 76 toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) genes, four resistance to powdery mildew 8 (RPW8)-NBS-LRR (RNL) subclass genes, and 178 atypical NLR genes encoding proteins without at least one important domain. Among its eight chromosomes, M. ruthenica chromosomes 3 and 8 contained most of the NLR genes. More than 40% of all NLR genes were located on these two chromosomes, mainly in multigene clusters. The NLR proteins of M. ruthenica had six highly conserved motifs: P-loop, GLPL, RNBS-D, kinase-2, RNBS-C, and MHDV. Phylogenetic analysis revealed that the NLR genes of M. ruthenica formed three deeply separated clades according to the N-terminal domain of the proteins encoded by these genes. Gene duplication and syntenic analysis suggested four gene duplication types in the NLR genes of M. ruthenica, namely, tandem, proximal, dispersed, and segmental duplicates, which involved 189, 49, 59, and 41 genes, respectively. A total of 41 segmental duplication genes formed 23 NLR gene pairs located on syntenic chromosomal blocks mainly between chromosomes 6 and 7. In addition, syntenic analysis between M. truncatula and M. ruthenica revealed 193 gene pairs located on syntenic chromosomal blocks of the two species. The expression analysis of M. ruthenica NLR genes showed that 303 (89.6%) of the NLR genes were expressed in different varieties. Overall, this study described the full NLR profile of the M. ruthenica genome to provide an important resource for mining disease-resistant genes and disease-resistant breeding.
Collapse
Affiliation(s)
- Chunyan Tong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China
| | - Yutong Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China
| | - Fengling Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Key Laboratory of Grassland Resources (IMAU), Ministry of Education, Hohhot, China,*Correspondence: Fengling Shi,
| |
Collapse
|
4
|
Kapazoglou A, Gerakari M, Lazaridi E, Kleftogianni K, Sarri E, Tani E, Bebeli PJ. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020328. [PMID: 36679041 PMCID: PMC9861506 DOI: 10.3390/plants12020328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
Global climate change is one of the major constraints limiting plant growth, production, and sustainability worldwide. Moreover, breeding efforts in the past years have focused on improving certain favorable crop traits, leading to genetic bottlenecks. The use of crop wild relatives (CWRs) to expand genetic diversity and improve crop adaptability seems to be a promising and sustainable approach for crop improvement in the context of the ongoing climate challenges. In this review, we present the progress that has been achieved towards CWRs exploitation for enhanced resilience against major abiotic stressors (e.g., water deficiency, increased salinity, and extreme temperatures) in crops of high nutritional and economic value, such as tomato, legumes, and several woody perennial crops. The advances in -omics technologies have facilitated the elucidation of the molecular mechanisms that may underlie abiotic stress tolerance. Comparative analyses of whole genome sequencing (WGS) and transcriptomic profiling (RNA-seq) data between crops and their wild relative counterparts have unraveled important information with respect to the molecular basis of tolerance to abiotic stressors. These studies have uncovered genomic regions, specific stress-responsive genes, gene networks, and biochemical pathways associated with resilience to adverse conditions, such as heat, cold, drought, and salinity, and provide useful tools for the development of molecular markers to be used in breeding programs. CWRs constitute a highly valuable resource of genetic diversity, and by exploiting the full potential of this extended allele pool, new traits conferring abiotic-stress tolerance may be introgressed into cultivated varieties leading to superior and resilient genotypes. Future breeding programs may greatly benefit from CWRs utilization for overcoming crop production challenges arising from extreme environmental conditions.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efstathia Lazaridi
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Konstantina Kleftogianni
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
5
|
Matos MKDS, Benko-Iseppon AM, Bezerra-Neto JP, Ferreira-Neto JRC, Wang Y, Liu H, Pandolfi V, Amorim LLB, Willadino L, do Vale Amorim TC, Kido EA, Vianello RP, Timko MP, Brasileiro-Vidal AC. The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration. Gene X 2022; 823:146377. [PMID: 35231571 DOI: 10.1016/j.gene.2022.146377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Cowpea [Vigna unguiculata (L.) Walp.] is one of the most tolerant legume crops to drought and salt stresses. WRKY transcription factor (TF) family members stand out among plant transcriptional regulators related to abiotic stress tolerance. However, little information is currently available on the expression of the cowpea WRKY gene family (VuWRKY) in response to water deficit. Thus, we analyzed genomic and transcriptomic data from cowpea to identify VuWRKY members and characterize their structure and transcriptional response under root dehydration stress. Ninety-two complete VuWRKY genes were found in the cowpea genome based on their domain characteristics. They were clustered into three groups: I (15 members), II (58), and III (16), while three genes were unclassified. Domain analysis of the encoded proteins identified four major variants of the conserved heptapeptide motif WRKYGQK. In silico analysis of VuWRKY gene promoters identified eight candidate binding motifs of cis-regulatory elements, regulated mainly by six TF families associated with abiotic stress responses. Ninety-seven VuWRKY modulated splicing variants associated with 55 VuWRKY genes were identified via RNA-Seq analysis available at the Cowpea Genomics Consortium (CpGC) database. qPCR analyses showed that 22 genes are induced under root dehydration, with VuWRKY18, 21, and 75 exhibiting the most significant induction levels. Given their central role in activating signal transduction cascades in abiotic stress response, the data provide a foundation for the targeted modification of specific VuWRKY family members to improve drought tolerance in this important climate-resilient legume in the developing world and beyond.
Collapse
Affiliation(s)
- Mitalle Karen da Silva Matos
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana Maria Benko-Iseppon
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Pacifico Bezerra-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Yu Wang
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hai Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Valesca Pandolfi
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lidiane Lindinalva Barbosa Amorim
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lilia Willadino
- Laboratório de Cultura de Tecidos Vegetais, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thialisson Caaci do Vale Amorim
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ederson Akio Kido
- Laboratório de Genética Molecular, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Rosana Pereira Vianello
- Laboratório de Biotecnologia, Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Arroz e Feijão, Goiânia, Brazil
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Ana Christina Brasileiro-Vidal
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
6
|
Liu X, Yang X, Zhang B. Transcriptome analysis and functional identification of GmMYB46 in soybean seedlings under salt stress. PeerJ 2021; 9:e12492. [PMID: 34824922 PMCID: PMC8590805 DOI: 10.7717/peerj.12492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
Salinity is one of the major abiotic stress that limits crop growth and productivity. We investigated the transcriptomes of salt-treated soybean seedlings versus a control using RNA-seq to better understand the molecular mechanisms of the soybean (Glycine max L.) response to salt stress. Transcriptome analysis revealed 1,235 differentially expressed genes (DEGs) under salt stress. Several important pathways and key candidate genes were identified by KEGG enrichment. A total of 116 differentially expressed transcription factors (TFs) were identified, and 17 TFs were found to belong to MYB families. Phylogenetic analysis revealed that these TFs may be involved in salt stress adaptation. Further analysis revealed that GmMYB46 was up-regulated by salt and mannitol and was localized in the nucleus. The salt tolerance of transgenic Arabidopsis overexpressing GmMYB46 was significantly enhanced compared to wild-type (WT). GmMYB46 activates the expression of salt stress response genes (P5CS1, SOD, POD, NCED3) in Arabidopsis under salt stress, indicating that the GmMYB46 protein mediates the salt stress response through complex regulatory mechanisms. This study provides information with which to better understand the molecular mechanism of salt tolerance in soybeans and to genetically improve the crop.
Collapse
Affiliation(s)
- Xun Liu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China.,College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinxia Yang
- Department of Logistics, Hunan University of Science and Engineering, Yongzhou, China
| | - Bin Zhang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
7
|
Yang J, Gao L, Liu X, Zhang X, Wang X, Wang Z. Comparative transcriptome analysis of fiber and nonfiber tissues to identify the genes preferentially expressed in fiber development in Gossypium hirsutum. Sci Rep 2021; 11:22833. [PMID: 34819523 PMCID: PMC8613186 DOI: 10.1038/s41598-021-01829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cotton is an important natural fiber crop and economic crop worldwide. The quality of cotton fiber directly determines the quality of cotton textiles. Identifying cotton fiber development-related genes and exploring their biological functions will not only help to better understand the elongation and development mechanisms of cotton fibers but also provide a theoretical basis for the cultivation of new cotton varieties with excellent fiber quality. In this study, RNA sequencing technology was used to construct transcriptome databases for different nonfiber tissues (root, leaf, anther and stigma) and fiber developmental stages (7 days post-anthesis (DPA), 14 DPA, and 26 DPA) of upland cotton Coker 312. The sizes of the seven transcriptome databases constructed ranged from 4.43 to 5.20 Gb, corresponding to approximately twice the genome size of Gossypium hirsutum (2.5 Gb). Among the obtained clean reads, 83.32% to 88.22% could be compared to the upland cotton TM-1 reference genome. By analyzing the differential gene expression profiles of the transcriptome libraries of fiber and nonfiber tissues, we obtained 1205, 1135 and 937 genes with significantly upregulated expression at 7 DPA, 14 DPA and 26 DPA, respectively, and 124, 179 and 213 genes with significantly downregulated expression. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analyses were performed, which revealed that these genes were mainly involved in catalytic activity, carbohydrate metabolism, the cell membrane and organelles, signal transduction and other functions and metabolic pathways. Through gene annotation analysis, many transcription factors and genes related to fiber development were screened. Thirty-six genes were randomly selected from the significantly upregulated genes in fiber, and expression profile analysis was performed using qRT-PCR. The results were highly consistent with the gene expression profile analyzed by RNA-seq, and all of the genes were specifically or predominantly expressed in fiber. Therefore, our RNA sequencing-based comparative transcriptome analysis will lay a foundation for future research to provide new genetic resources for the genetic engineering of improved cotton fiber quality and for cultivating new transgenic cotton germplasms for fiber quality improvement.
Collapse
Affiliation(s)
- Jiangtao Yang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihua Gao
- School of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Xiaojing Liu
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaochun Zhang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xujing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhixing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Guo M, Li H, Zhu L, Wu Z, Li J, Li Z. Genome-wide identification of microRNAs associated with osmotic stress and elucidation of the role of miR319 in Medicago ruthenica seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:53-61. [PMID: 34619598 DOI: 10.1016/j.plaphy.2021.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major environmental stress that affects plant growth, development, and productivity. Medicago ruthenica, a leguminous forage, has garnered attention owing to its resistance to abiotic stress. The purpose of the current study was to explore genes conferring drought resistance to M. ruthenica. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in plants and are associated with developmental plasticity and abiotic/biotic stress responses. Here, high-throughput small RNA, mRNA, and degradome sequencing analyses were performed to analyze miRNAs and their potential target genes in the leaves of M. ruthenica seedlings under osmotic stress conditions. In total, 591 miRNAs were identified. A comparison of the expression levels showed that 15 miRNAs (14 upregulated and 1 downregulated) were significantly differentially expressed following PEG6000 treatment compared with those in the control (0 h). Most miRNAs are highly conserved between M. ruthenica and Medicago truncatula. Using TargetFinder, 11 target genes were predicted; the expression of these target genes negatively correlated with that of five miRNAs related to osmotic stress response. miR319 downregulated the expression of teosinte branched/cycloidea/proliferating cell factor 4 (TCP4), which encodes plant-specific transcription factors, more significantly in the leaves than in the roots. These results were confirmed using quantitative real-time polymerase chain reaction, northern blotting, RLM 5'RACE, and a Nicotiana benthamiana transient expression system. The miR319-TCP4 module may act as a homeostasis factor in M. ruthenica roots following drought injury, and it is conserved among plant species.
Collapse
Affiliation(s)
- Maowei Guo
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Hongyan Li
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Lin Zhu
- Grassland and Resources Environment Institute, Inner Mongolia Agriculture University, Hohhot, China
| | - Zinian Wu
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jun Li
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China; Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Zhiyong Li
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China.
| |
Collapse
|
9
|
Xu HY, Li YY, Shang XL, Zhong H, Dong KH, Xia FS. The complete chloroplast genome of Medicago ruthenica cv. 'Taihang' (Fabaceae) from Shanxi, China. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2688-2690. [PMID: 34435120 PMCID: PMC8382020 DOI: 10.1080/23802359.2021.1966328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Medicago ruthenica is an important perennial forage with multiple characteristics of resistance. In this study, we sequenced and characterized the complete chloroplast genome of M. ruthenica 'Taihang', which is 124, 254 bp in length. A total of 108 genes were identified, including 74 protein-coding, 30 tRNA, and four rRNA genes. Phylogenetic analysis based on 27 chloroplast genomes showed that M. ruthenica 'Taihang' has a close relationship with M. ruthenica from Qinghai Province, China. The data are useful in better understanding the genetic diversity and stress resistance of Medicago and contribute to the phylogenetic study of Trifolieae.
Collapse
Affiliation(s)
- Hong-Yu Xu
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yu-Ying Li
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xiao-Lan Shang
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hua Zhong
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Kuan-Hu Dong
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Fang-Shan Xia
- College of Grassland Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
10
|
Jinqiu Y, Bing L, Tingting S, Jinglei H, Zelai K, Lu L, Wenhua H, Tao H, Xinyu H, Zengqing L, Guowen C, Yajun C. Integrated Physiological and Transcriptomic Analyses Responses to Altitude Stress in Oat ( Avena sativa L.). Front Genet 2021; 12:638683. [PMID: 34220929 PMCID: PMC8248544 DOI: 10.3389/fgene.2021.638683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Oat is an annual gramineous forage grass with the remarkable ability to survive under various stressful environments. However, understanding the effects of high altitude stresses on oats is poor. Therefore, the physiological and the transcriptomic changes were analyzed at two sites with different altitudes, low (ca. 2,080 m) or high (ca. 2,918 m), respectively. Higher levels of antioxidant enzyme activity, reactive oxygen and major reductions in photosynthesis-related markers were suggested for oats at high altitudes. Furthermore, oat yields were severely suppressed at the high altitude. RNA-seq results showed that 11,639 differentially expressed genes were detected at both the low and the high altitudes in which 5,203 up-regulated and 6,436 down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment tests were conducted and a group of major high altitude-responsive pigment metabolism genes, photosynthesis, hormone signaling, and cutin, suberine and wax biosynthesis were excavated. Using quantitative real-time polymerase chain response, we also confirmed expression levels of 20 DEGs (qRT-PCR). In summary, our study generated genome-wide transcript profile and may be useful for understanding the molecular mechanisms of Avena sativa L. in response to high altitude stress. These new findings contribute to our deeper relevant researches on high altitude stresses and further exploring new candidategenes for adapting plateau environment oat molecular breeding.
Collapse
Affiliation(s)
- Yu Jinqiu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Li Bing
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Song Tingting
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - He Jinglei
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - KongLing Zelai
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lian Lu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - He Wenhua
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hai Tao
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Huang Xinyu
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Liu Zengqing
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Cui Guowen
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Chen Yajun
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Yin M, Zhang S, Du X, Mateo RG, Guo W, Li A, Wang Z, Wu S, Chen J, Liu J, Ren G. Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history. Mol Ecol Resour 2021; 21:1641-1657. [PMID: 33615703 DOI: 10.1111/1755-0998.13363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023]
Abstract
Medicago ruthenica has been recently cultivated as a new forage crop and has been recognized as a source of genes to improve abiotic stress tolerance in cultivated alfalfa because of its remarkable tolerance to drought, salinity-alkalinity, and cold and snowy winters. Here, we reveal a chromosome-scale genome sequence of M. ruthenica based on Illumina, PacBio, and Hi-C data. The assembled genome consists of 903.56 Mb with 50,268 annotated protein-coding genes, which is larger and contains relatively more genes than Medicago truncatula (420 Mb and 44,623 genes) and Medicago sativa spp. caerulea (793 Mb and 47,202 genes). All three species shared the ancestral Papilionoideae whole-genome duplication event before their divergence. The more recent expansion of repetitive elements compared to that in the other two species was determined to have contributed greatly to the larger genome size of M. ruthenica. We further found that multiple gene and transcription factor families (e.g., SOS homologous genes, NAC, C2H2, and CAMTA) have expanded in M. ruthenica, which might have led to its enhanced tolerance to abiotic stress. In addition, M. ruthenica harbors more genes involved in the lignin and cellulose biosynthesis pathways than the other two species. Finally, population genomic analyses revealed two genetic lineages, reflecting the west and east of its geographical distribution, respectively. The two lineages probably diverged during the last glaciation and survived in multiple refugia at the last glacial maximum, followed by recent expansion. Our genomic data provide a genetic basis for further molecular breeding research on M. ruthenica and alfalfa.
Collapse
Affiliation(s)
- Mou Yin
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shangzhe Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Du
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rubén G Mateo
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Wei Guo
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ao Li
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shuang Wu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jinyuan Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Zhang H, Zhao X, Sun Q, Yan C, Wang J, Yuan C, Li C, Shan S, Liu F. Comparative Transcriptome Analysis Reveals Molecular Defensive Mechanism of Arachis hypogaea in Response to Salt Stress. Int J Genomics 2020; 2020:6524093. [PMID: 32190641 PMCID: PMC7063224 DOI: 10.1155/2020/6524093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/25/2019] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Abiotic stresses comprise all nonliving factors, such as soil salinity, drought, extreme temperatures, and metal toxicity, posing a serious threat to agriculture and affecting the plant production around the world. Peanut (Arachis hypogaea L.) is one of the most important crops for vegetable oil, proteins, minerals, and vitamins in the world. Therefore, it is of importance to understand the molecular mechanism of peanut against salt stress. Six transcriptome sequencing libraries including 24-hour salt treatments and control samples were constructed from the young leaves of peanut. A comprehensive analysis between two groups detected 3,425 differentially expressed genes (DEGs) including 2,013 upregulated genes and 1,412 downregulated genes. Of these DEGs, 141 transcription factors (TFs) mainly consisting of MYB, AP2/ERF, WRKY, bHLH, and HSF were identified in response to salinity stress. Further, GO categories of the DEGs highly related to regulation of cell growth, cell periphery, sustained external encapsulating structure, cell wall organization or biogenesis, antioxidant activity, and peroxidase activity were significantly enriched for upregulated DEGs. The function of downregulated DEGs was mainly enriched in regulation of metabolic processes, oxidoreductase activity, and catalytic activity. Fourteen DEGs with response to salt tolerance were validated by real-time PCR. Taken together, the identification of DEGs' response to salt tolerance of cultivated peanut will provide a solid foundation for improving salt-tolerant peanut genetic manipulation in the future.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
- Shandong Peanut Research Institute, Qingdao, Shandong 266000, China
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, Shandong 266000, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, Shandong 266000, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, Shandong 266000, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, Shandong 266000, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, Shandong 266000, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, Shandong 266000, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, Shandong 266000, China
| | - Fengzhen Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
13
|
Yang H, Zhang Y, Zhen X, Guo D, Guo C, Shu Y. Transcriptome sequencing and expression profiling of genes involved in daylily ( Hemerocallis citrina Borani) flower development. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1788420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Huanhuan Yang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Yufeng Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Xin Zhen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Donglin Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, P.R. China
| |
Collapse
|
14
|
Zhao Y, Ma W, Wei X, Long Y, Zhao Y, Su M, Luo Q. Identification of Exogenous Nitric Oxide-Responsive miRNAs from Alfalfa ( Medicago sativa L.) under Drought Stress by High-Throughput Sequencing. Genes (Basel) 2019; 11:genes11010030. [PMID: 31888061 PMCID: PMC7016817 DOI: 10.3390/genes11010030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Alfalfa (Medicago sativa L.) is a high quality leguminous forage. Drought stress is one of the main factors that restrict the development of the alfalfa industry. High-throughput sequencing was used to analyze the microRNA (miRNA) profiles of alfalfa plants treated with CK (normal water), PEG (polyethylene glycol-6000; drought stress), and PEG + SNP (sodium nitroprusside; nitric oxide (NO) sprayed externally under drought stress). We identified 90 known miRNAs belonging to 46 families and predicted 177 new miRNAs. Real-time quantitative fluorescent PCR (qRT-PCR) was used to validate high-throughput expression analysis data. A total of 32 (14 known miRNAs and 18 new miRNAs) and 55 (24 known miRNAs and 31 new miRNAs) differentially expressed miRNAs were identified in PEG and PEG + SNP samples. This suggested that exogenous NO can induce more new miRNAs. The differentially expressed miRNA maturation sequences in the two treatment groups were targeted by 86 and 157 potential target genes, separately. The function of target genes was annotated by gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) analysis. The expression profiles of nine selected miRNAs and their target genes verified that their expression patterns were opposite. This study has documented that analysis of miRNA under PEG and PEG + SNP conditions provides important insights into the improvement of drought resistance of alfalfa by exogenous NO at the molecular level. This has important scientific value and practical significance for the improvement of plant drought resistance by exogenous NO.
Collapse
Affiliation(s)
- Yaodong Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| | - Wenjing Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-138-9331-7951
| | - Yu Long
- College of Business Administration, Kent State University, Kent, OH 44240, USA;
| | - Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| | - Meifei Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| | - Qiaojuan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (W.M.); (Y.Z.); (M.S.); (Q.L.)
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou 730070, China
| |
Collapse
|
15
|
Singh A, Singh PK, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR. Understanding the Role of the WRKY Gene Family under Stress Conditions in Pigeonpea ( Cajanus Cajan L.). PLANTS 2019; 8:plants8070214. [PMID: 31295921 PMCID: PMC6681228 DOI: 10.3390/plants8070214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/26/2022]
Abstract
Pigeonpea (Cajanus cajan L.), a protein-rich legume, is a major food component of the daily diet for residents in semi-arid tropical regions of the word. Pigeonpea is also known for its high level of tolerance against biotic and abiotic stresses. In this regard, understanding the genes involved in stress tolerance has great importance. In the present study, identification, and characterization of WRKY, a large transcription factor gene family involved in numerous biological processes like seed germination, metabolism, plant growth, biotic and abiotic stress responses was performed in pigeonpea. A total of 94 WRKY genes identified in the pigeonpea genome were extensively characterized for gene-structures, localizations, phylogenetic distribution, conserved motif organizations, and functional annotation. Phylogenetic analysis revealed three major groups (I, II, and III) of pigeonpea WRKY genes. Subsequently, expression profiling of 94 CcWRKY genes across different tissues like root, nodule, stem, petiole, petal, sepal, shoot apical meristem (SAM), mature pod, and mature seed retrieved from the available RNAseq data identified tissue-specific WRKY genes with preferential expression in the vegetative and reproductive stages. Gene co-expression networks identified four WRKY genes at the center of maximum interaction which may play a key role in the entire WRKY regulations. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) expression analysis of WRKY genes in root and leaf tissue samples from plants under drought and salinity stress identified differentially expressed WRKY genes. The study will be helpful to understand the evolution, regulation, and distribution of the WRKY gene family, and additional exploration for the development of stress tolerance cultivars in pigeonpea and other legumes crops.
Collapse
Affiliation(s)
- Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 226031, India
| | | | - Ajay Kumar Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005, India
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India.
| |
Collapse
|