1
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
2
|
Cui X, Zhang F, Meng H, Yuan T, Li M, Yuan D, Fan X, Jia X, Wang Q, Xing L, Wu C. Transport of miR-766-3p to A549 cells by plasma-derived exosomes and its effect on intracellular survival of Mycobacterium tuberculosis by regulating NRAMP1 expression in A549 cells. Microbiol Res 2025; 290:127943. [PMID: 39504604 DOI: 10.1016/j.micres.2024.127943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
Exosomal microRNAs (miRNAs) in circulation were recognized as potential biomarkers for the diagnosis of multiple diseases. However, its potential as a diagnostic hallmark for tuberculosis (TB) has yet to be explored. Here, we comprehensively analyze miRNA profiles in exosomes derived from the plasma of active TB patients and healthy persons to evaluate its efficacy in TB diagnosis. Small-RNA transcriptomic profiling analysis identified a total of 14 differentially expressed miRNAs (DEmiRNAs), among which the diagnostic potential of exosomal miR-766-3p, miR-376c-3p, miR-1283, and miR-125a-5p was evident from their respective areas under the ROC curve, which were 0.8963, 0.8313, 0.8097, and 0.8050, respectively. The bioinformatics analysis and Luciferase reporter assays confirmed that the 3'-untranslated region of natural resistance-associated macrophage protein 1 (NRAMP1) mRNA was targeted by miR-766-3p. The exosomes could be internalized by the A549 cells in co-culturing experiments. Furthermore, both increased miR-766-3p and decreased NRAMP1 expression were observed in Mtb-infected A549 cells. MiR-766-3p overexpression reduced the NRAMP1 levels, but increased intracellular Mtb, suggesting that miR-766-3p may facilitate Mtb survival by targeting NRAMP1. Moreover, miR-766-3p-transfected cells exhibited increased apoptosis and reduced proliferation following Mtb infection. Taken together, circulating exosomal miR-766-3p, miR-1283, miR-125a-5p, and miR-376c-3p may serve as candidate hallmarks for TB diagnosis where the presence of miR-766-3p seems associated with the vulnerability to Mtb infection in humans and could be a new molecular target for therapeutic intervention of TB.
Collapse
Affiliation(s)
- Xiaogang Cui
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Fengfeng Zhang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Hangting Meng
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Tianqi Yuan
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Miao Li
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Dan Yuan
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiaoxia Fan
- Taiyuan Fourth People's Hospital, Taiyuan 030053, China
| | - Xiaohui Jia
- Taiyuan Fourth People's Hospital, Taiyuan 030053, China
| | - Quanhong Wang
- Taiyuan Fourth People's Hospital, Taiyuan 030053, China.
| | - Li Xing
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
He J, Xiong J, Huang Y. miR-29 as diagnostic biomarkers for tuberculosis: a systematic review and meta-analysis. Front Public Health 2024; 12:1384510. [PMID: 38807999 PMCID: PMC11130415 DOI: 10.3389/fpubh.2024.1384510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Background The timely diagnosis of tuberculosis through innovative biomarkers that do not rely on sputum samples is a primary focus for strategies aimed at eradicating tuberculosis. miR-29 is an important regulator of tuberculosis pathogenesis. Its differential expression pattern in healthy, latent, and active people who develop tuberculosis has revealed its potential as a biomarker in recent studies. Therefore, a systematic review and meta-analysis were performed for the role of miR-29 in the diagnosis of tuberculosis. Methods EMBASE, PubMed, CNKI, Web of Science, and Cochrane Library databases were searched utilizing predefined keywords for literature published from 2000 to February 2024.Included in the analysis were studies reporting on the accuracy of miR-29 in the diagnosis of tuberculosis, while articles assessing other small RNAs were not considered. All types of study designs, including case-control, cross-sectional, and cohort studies, were included, whether prospectively or retrospectively sampled, and the quality of included studies was determined utilizing the QUADAS-2 tool. Publication bias was analyzed via the construction of funnel plots. Heterogeneity among studies and summary results for specificity, sensitivity, and diagnostic odds ratio (DOR) are depicted in forest plots. Results A total of 227 studies were acquired from the various databases, and 18 articles were selected for quantitative analysis. These articles encompassed a total of 2,825 subjects, primarily sourced from the Asian region. Patient specimens, including sputum, peripheral blood mononuclear cells, cerebrospinal fluid and serum/plasma samples, were collected upon admission and during hospitalization for tuberculosis testing. miR-29a had an overall sensitivity of 82% (95% CI 77, 85%) and an overall specificity of 82% (95% CI 78, 86%) for detecting tuberculosis. DOR was 21 (95% CI 16-28), and the area under the curve was 0.89 (95% CI 0.86, 0.91). miR-29a had slightly different diagnostic efficacy in different specimens. miR-29a showed good performance in both the diagnosis of pulmonary tuberculosis and extrapulmonary tuberculosis. miR-29b and miR-29c also had a good performance in diagnosis of tuberculosis. Conclusion As can be seen from the diagnostic performance of miR-29, miR-29 can be used as a potential biomarker for the rapid detection of tuberculosis. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=461107.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Xiong
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Emergency Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuanyuan Huang
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Yao S, Liu B, Hu X, Tan Y, Liu K, He M, Wu B, Ahmad N, Su X, Zhang Y, Yi M. Diagnostic value of microRNAs in active tuberculosis based on quantitative and enrichment analyses. Diagn Microbiol Infect Dis 2024; 108:116172. [PMID: 38340483 DOI: 10.1016/j.diagmicrobio.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tuberculosis (TB) infection remains a crucial global health challenge, with active tuberculosis (ATB) representing main infection source. MicroRNA (miRNA) has emerged as a potential diagnostic tool in this context. This study aims to identify candidate miRNAs for ATB diagnosis and explore their possible mechanisms. METHODS Differentially expressed miRNAs in ATB were summarized in qualitative analysis. The diagnostic values of miRNAs for ATB subtypes were assessed by overall sensitivity, specificity, and area under the curve. Additionally, we conducted enrichment analysis on miRNAs and target genes. RESULTS Over 100 differentially expressed miRNAs were identified, with miR-29 family being the most extensively studied. The miR-29 family demonstrated sensitivity, specificity, and area under the curve of 80 %, 80 % and 0.86 respectively for active pulmonary TB (PTB). The differentially expressed miR-29-target genes in PTB were enriched in immune-related pathways. CONCLUSIONS The miR-29 family exhibits good diagnostic value for active PTB and shows association with immune process.
Collapse
Affiliation(s)
- Shuoyi Yao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- School of Medicine, Changsha Social Work College, Changsha, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, China
| | - Meng He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bohan Wu
- School of Life Sciences, Central South University, Changsha, China
| | - Namra Ahmad
- School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
5
|
Alijani E, Rad FR, Katebi A, Ajdary S. Differential Expression of miR-146 and miR-155 in Active and Latent Tuberculosis Infection. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1749-1757. [PMID: 37744552 PMCID: PMC10512130 DOI: 10.18502/ijph.v52i8.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/15/2022] [Indexed: 09/26/2023]
Abstract
Background Tuberculosis (TB) is one of the leading causes of death worldwide. Besides, one-third of the world population is infected with Mycobacterium tuberculosis (MTB) while staying clinically asymptomatic; the situation is called latent TB infection (LTBI). MiR-21, miR-31, miR-146a, and miR-155 play an important role in many immune and inflammatory pathways. In the present study the expression levels of MiR-21, miR-31, miR-146a, and miR-155 in peripheral blood mononuclear cells (PBMCs) from patients with active TB, latently infected individuals (LTBI), and healthy controls (HC) were investigated. Participants were recruited at the Bouali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran from 2010 to 2011. Methods PBMCs were stimulated with PPD before RNA extraction. TaqMan RT-qPCR assay was used to analyze the expression levels of miRNAs. Results The results indicated no significant differences in the expression of miR-21 and miR-31 between different groups; however, in patients with active TB, the expression of miR-21 (P=0.03) and miR-31 (P=0.04) were significantly increased after stimulation with PPD compared to the unstimulated condition. The expression of miR-146 in response to PPD in both LTBI (P=0.02) and TB (P=0.03) groups compared to the HC group was increased. No significant differences were found in the expression level of miR-155 in response to PPD between LTBI and HC groups. However, the fold change was significantly higher in the TB group in comparison with the HC (P=0.03) and LTBI (P=0.05) groups. Conclusion The results confirm the main role of miR-146 and miR-155 in TB infection and suggest a role for miR-146 and miR-155 as infection and activation markers in tuberculosis infection, respectively.
Collapse
Affiliation(s)
- Ebrahim Alijani
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Asal Katebi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Regueira P, Silva AR, Cardoso AL, Cardoso AM, Baldeiras I, Santana I, Cerejeira J. Peripheral inflammatory markers during an acute bacterial infection in older patients with and without cognitive dysfunction: A case control study. Brain Behav Immun Health 2022; 25:100503. [PMID: 36093438 PMCID: PMC9460160 DOI: 10.1016/j.bbih.2022.100503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Dementia is a known risk factor for acute bacterial infections which may also play a significant role in promoting or accelerating cognitive impairment. Pneumonia and urinary tract infections are the main cause of hospitalisation of dementia patients and infections are a major precipitant of delirium. It is well established that peripheral immune signals induce a neuroinflammatory response largely mediated by microglial cells which is amplified with advanced age, neurodegenerative disorders and genetic characteristics. Reversely, the innate immune response to acute bacterial infection is tightly regulated by the brain. It remains unclear whether dysfunctional neural circuits affected by dementia and/or delirium could alter systemic innate immune responses at the periphery. The current study aims to determine if dementia and/or delirium are associated with an altered systemic inflammatory response to an acute bacterial infection. We recruited 46 hospitalised older patients with acute bacterial infections. From these, 29 participants had cognitive dysfunction (6 with delirium, 12 with dementia and 11 with delirium superimposed on dementia) and 17 had normal cognition. We also included a control group of 11 patients with dementia but with no current infection matched for age and educational status. Baseline characteristics were tested between groups using Kruskal-Wallis test and pairwise comparisons were subsequently assessed with Bonferroni correction for multiple comparisons for continuous variables. Chi square test was used to assess differences between groups in categorical data and correlations between peripheral inflammatory parameters were assessed with Spearman's test. The 4 groups with infection and the control group with no infection had similar characteristics except for cognitive function and functionality which was higher for the group of infected cognitively healthy participants. Levels of C-reactive protein were similar between the infected groups and higher than the non-infected dementia group. Infected patients with cognitive dysfunction (delirium and/or dementia) had higher serum levels of IL-6, TNF-alpha and IL-1beta. These participants had reduced expression of miR-145 in circulating exosomes which correlated negatively with miR-155 levels (r = −0.411, p = 0.027). Expression of CR1 in circulating CD14+ monocytes was higher in infected participants with cognitive dysfunction and, in this group, PICALM correlated both with TNF-alpha and IL-6. In contrast to what was observed in participants with normal cognition, expression of CR1 did not correlate with DAP12 in infected participants with cognitive dysfunction. Taken together, our findings suggest that cognitive dysfunction is associated with an exaggerated proinflammatory response during acute bacterial infection with deregulation of several molecular signalling pathways in circulating exosomes and in monocytes.
Collapse
|
7
|
Daniel EA, Sathiyamani B, Thiruvengadam K, Vivekanandan S, Vembuli H, Hanna LE. MicroRNAs as diagnostic biomarkers for Tuberculosis: A systematic review and meta- analysis. Front Immunol 2022; 13:954396. [PMID: 36238288 PMCID: PMC9551313 DOI: 10.3389/fimmu.2022.954396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe early diagnosis of tuberculosis using novel non-sputum-based biomarkers is of high priority in the End TB strategy. MicroRNAs (miRNAs) are significant regulators of TB pathogenesis and their differential expression pattern among healthy, latent, and active TB population has revealed their potentiality as biomarkers in recent studies. Thus, we systematically reviewed and performed a meta-analysis on the role of host miRNAs in TB diagnosis. We also reviewed the involvement of miRNAs in the immune response to Mycobacterium tuberculosis (Mtb).MethodsPubmed, Ovid and Cochrane databases were searched to retrieve published literature from 2000 to 2020 using predefined keywords. We screened relevant studies based on inclusion and exclusion criteria and the included studies were assessed for their quality using STARD guidelines and QUADAS-2 tool. Funnel plots were constructed to assess the publication bias. The heterogeneity of studies and overall pooled results of sensitivity, specificity and DOR were determined using forest plots.ResultsWe retrieved a total of 447 studies collectively from all the databases, out of which 21 studies were included for qualitative analysis. In these studies, miR-29, miR-31, miR-125b, miR146a and miR-155 were consistently reported. The overall sensitivity, specificity and DOR of these miRNAs were found to be 87.9% (81.7-92.2), 81.2% (74.5-86.5) and 43.1(20.3-91.3) respectively. Among these, miR-31 had the maximum diagnostic accuracy, with a sensitivity of 96% (89.7-98.5), specificity of 89% (81.2-93.8) and DOR of 345.9 (90.2-1326.3), meeting the minimal target product profile (TPP) for TB diagnostics.ConclusionmiRNAs can thus be exploited as potential biomarkers for rapid detection of tuberculosis as evident from their diagnostic performance. Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021226559 PROSPERO (CRD42021226559).
Collapse
Affiliation(s)
- Evangeline Ann Daniel
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
| | - Balakumaran Sathiyamani
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
| | - Kannan Thiruvengadam
- Department of Statistics, Epidemiology Unit, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Sandhya Vivekanandan
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
| | - Hemanathan Vembuli
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
| | - Luke Elizabeth Hanna
- Department of Virology and Biotechnology, ICMR- National Institute for Research in Tuberculosis, Chennai, India
- *Correspondence: Luke Elizabeth Hanna,
| |
Collapse
|
8
|
Magdalena D, Magdalena G. Biological functions and diagnostic implications of microRNAs in Mycobacterium tuberculosis infection. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.333208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Ma Y, Ren Y, Wen H, Cui C. circCOL1A1 Promotes the Progression of Gastric Cancer Cells through Sponging miR-145 to Enhance RABL3 Expression. J Immunol Res 2021; 2021:6724854. [PMID: 34631898 PMCID: PMC8494588 DOI: 10.1155/2021/6724854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 12/09/2022] Open
Abstract
Circular RNA has been reported to be a new noncoding RNA which plays important roles in tumor progression. One of the most common functions of circular RNA is to regulate microRNA expression by acting as a microRNA sponge. However, the circular RNA expression profile and function remain mostly unclear in gastric cancer. In the study, we explored the expression and function of circCOL1A1 (hsa_circ_0044556) in gastric cancer. We performed RT-PCR with divergent primers, mRNA stability assay, and RNase R digestion assay to characterize circCOL1A1 in gastric cancer cell lines. qRT-PCR was applied to detect the level of circCOL1A1 in both gastric cancer cell lines and tissues. Gain- and loss-of-function studies were carried out to detect the influence of circCOL1A1 on gastric cancer cells by performing CCK8, migration, and invasion assays. The regulation of the downstream genes was identified by qRT-PCR, western blot assay, dual luciferase assay, and RNA pull-down assay. The results showed that circCOL1A1 was highly expressed in both gastric cancer cells and tissues. Silence of circCOL1A1 inhibited the proliferation, migration, and invasion of gastric cancer cells. circCOL1A1 regulated the expression of miR-145 by acting as a microRNA sponge, and the influence of circCOL1A1 could be abrogated by miR-145 mimics. Our research shows that miR-145 plays its functions through targeting and regulating RABL3. Inhibition of circCOL1A1/miR-145/RABL3 could effectively suppress gastric cancer cell proliferation, migration, and invasion. circCOL1A1 also promote the transformation of M1 into M2 macrophage. Our study identified circCOL1A1 as a novel oncogenic circRNA and will provide more information for gastric cancer therapy.
Collapse
Affiliation(s)
- Yue Ma
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, China
| | - Yanyi Ren
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, China
| | - Huitao Wen
- Department of Nephrology, Chengdu First People's Hospital, No. 18 Norn Vientiane Road, Chengdu, Hi-Tech Zone 610041, Sichuan Province, China
| | - Chengcheng Cui
- Department of Pediatrics, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
10
|
Arteaga-Blanco LA, Bou-Habib DC. The Role of Extracellular Vesicles from Human Macrophages on Host-Pathogen Interaction. Int J Mol Sci 2021; 22:ijms221910262. [PMID: 34638604 PMCID: PMC8508751 DOI: 10.3390/ijms221910262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
The nano-sized membrane enclosed extracellular vesicles (EVs) released by virtually all cell types play an essential role in intercellular communication via delivering bio-molecules, such as nucleic acids, proteins, lipids, and other molecules to recipient cells. By mediating an active and steady-state cell-to-cell communication, EVs contribute to regulating and preserving cellular homeostasis. On the other hand, EVs can also spread pathogen-derived molecules during infections, subverting the host immune responses during infections and thus worsening pathophysiological processes. In recent years, the biological functioning of EVs has become a widespread research field in basic and clinical branches of medical sciences due to their potential role in therapeutic applications for several diseases. This review aims to summarize the main recent findings regarding the implication of EVs shed by human macrophages (MΦ-EVs) and how they can modulate the host immune response to control or increase the damage caused by infectious agents. We will also present the methods used to describe MΦ-EVs, as well as the potential of these EVs as disease diagnostic tools for some human pathogens. We believe that an in-depth understanding of the host–pathogen interactions mediated by MΦ-EVs may trigger the development of innovative therapeutic strategies against infectious diseases.
Collapse
Affiliation(s)
- Luis A. Arteaga-Blanco
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- Correspondence: (L.A.A.-B.); or (D.C.B.-H.)
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro 21040-900, Brazil
- Correspondence: (L.A.A.-B.); or (D.C.B.-H.)
| |
Collapse
|