1
|
Suresh KP, Indrabalan UB, Shreevatsa B, Dharmashekar C, Singh P, Patil SS, Syed A, Elgorban AM, Eswaramoorthy R, Amachawadi RG, Shivamallu C, Kollur SP. Evaluation of codon usage patterns and molecular evolution dynamics in Japanese encephalitis virus: An integrated bioinformatics approach. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105410. [PMID: 36791944 DOI: 10.1016/j.meegid.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
In the recent survey, Japanese encephalitis (JE) is one of the most common mosquito-borne diseases, accounting for ∼30% of fatalities. The outbreaks of the JE virus (JEV) suggests that exhaustive study is essential for the prevention and management of the disease. The disease mainly spreads in humans and pigs by the vector: mosquito; as this is a major concern, this study had employed various bioinformatics tools to investigate the codon usage bias, evolutionary inference and selection pressure analysis of the Japanese encephalitis virus disease. The results indicated that the JE virus was biased and natural selection was the main factor shaping the codon usage that was determined and confirmed with the Nc, neutrality, PR2 plots and correlation analysis. The evolutionary analysis revealed that the virus had a substitution rate of 1.54 × 10-4 substitution/site/year and the tMRCA was found to be in 1723. The transmission of the virus in the map found transmissions mostly from China and transmitted across Asia and Africa. The selection pressure analysis employed three methods which had 969th codon site as diversifying site and had many purifying sites that shows the virus had evolved rapidly. The inferences from this study would aid people to employ this methodology on various diseases and also perform insilico studies in the field of vaccinology and immunoinformatics.
Collapse
Affiliation(s)
| | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560063, India
| | - Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Pranav Singh
- Department of Internal Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560063, India.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia.
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamilnadu, India.
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5606, USA.
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India.
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidhyapeetham, Mysuru Campus, Mysuru 570 026, Karnataka, India.
| |
Collapse
|
2
|
Wang Y, Jiang D, Guo K, Zhao L, Meng F, Xiao J, Niu Y, Sun Y. Comparative analysis of codon usage patterns in chloroplast genomes of ten Epimedium species. BMC Genom Data 2023; 24:3. [PMID: 36624369 PMCID: PMC9830715 DOI: 10.1186/s12863-023-01104-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Phenomenon of codon usage bias exists in the genomes of prokaryotes and eukaryotes. The codon usage pattern is affected by environmental factors, base mutation, gene flow and gene expression level, among which natural selection and mutation pressure are the main factors. The study of codon preference is an effective method to analyze the source of evolutionary driving forces in organisms. Epimedium species are perennial herbs with ornamental and medicinal value distributed worldwide. The chloroplast genome is self-replicating and maternally inherited which is usually used to study species evolution, gene expression and genetic transformation. RESULTS The results suggested that chloroplast genomes of Epimedium species preferred to use codons ending with A/U. 17 common high-frequency codons and 2-6 optimal codons were found in the chloroplast genomes of Epimedium species, respectively. According to the ENc-plot, PR2-plot and neutrality-plot, the formation of codon preference in Epimedium was affected by multiple factors, and natural selection was the dominant factor. By comparing the codon usage frequency with 4 common model organisms, it was found that Arabidopsis thaliana, Populus trichocarpa, and Saccharomyces cerevisiae were suitable exogenous expression receptors. CONCLUSION The evolutionary driving force in the chloroplast genomes of 10 Epimedium species probably comes from mutation pressure. Our results provide an important theoretical basis for evolutionary analysis and transgenic research of chloroplast genes.
Collapse
Affiliation(s)
- Yingzhe Wang
- grid.449428.70000 0004 1797 7280College of Pharmacy, Jining Medical University, Rizhao, Shandong China ,grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Dacheng Jiang
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Kun Guo
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Lei Zhao
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Fangfang Meng
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Jinglei Xiao
- grid.440665.50000 0004 1757 641XSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin China
| | - Yuan Niu
- Lanzhou Agro-Technical Research and Popularization Center, Lanzhou, Gansu China
| | - Yunlong Sun
- grid.449428.70000 0004 1797 7280College of Pharmacy, Jining Medical University, Rizhao, Shandong China
| |
Collapse
|
3
|
Nair RR, Mohan M, Rudramurthy GR, Vivekanandam R, Satheshkumar PS. Strategies and Patterns of Codon Bias in Molluscum Contagiosum Virus. Pathogens 2021; 10:1649. [PMID: 34959603 PMCID: PMC8703355 DOI: 10.3390/pathogens10121649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Trends associated with codon usage in molluscum contagiosum virus (MCV) and factors governing the evolution of codon usage have not been investigated so far. In this study, attempts were made to decipher the codon usage trends and discover the major evolutionary forces that influence the patterns of codon usage in MCV with special reference to sub-types 1 and 2, MCV-1 and MCV-2, respectively. Three hypotheses were tested: (1) codon usage patterns of MCV-1 and MCV-2 are identical; (2) SCUB (synonymous codon usage bias) patterns of MCV-1 and MCV-2 slightly deviate from that of human host to avoid affecting the fitness of host; and (3) translational selection predominantly shapes the SCUB of MCV-1 and MCV-2. Various codon usage indices viz. relative codon usage value, effective number of codons and codon adaptation index were calculated to infer the nature of codon usage. Correspondence analysis and correlation analysis were performed to assess the relative contribution of silent base contents and significance of codon usage indices in defining bias in codon usage. Among the tested hypotheses, only the second and third hypotheses were accepted.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Vadavalli Post, Coimbatore 641041, India
| | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA 30605, USA;
| | | | - Reethu Vivekanandam
- Department of Biotechnology, Bharathiyar University, Coimbatore 641046, India;
| | | |
Collapse
|
4
|
Ata G, Wang H, Bai H, Yao X, Tao S. Edging on Mutational Bias, Induced Natural Selection From Host and Natural Reservoirs Predominates Codon Usage Evolution in Hantaan Virus. Front Microbiol 2021; 12:699788. [PMID: 34276633 PMCID: PMC8283416 DOI: 10.3389/fmicb.2021.699788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The molecular evolutionary dynamics that shape hantaviruses’ evolution are poorly understood even now, besides the contribution of virus-host interaction to their evolution remains an open question. Our study aimed to investigate these two aspects in Hantaan virus (HTNV)—the prototype of hantaviruses and an emerging zoonotic pathogen that infects humans, causing hemorrhagic fever with renal syndrome (HFRS): endemic in Far East Russia, China, and South Korea—via a comprehensive, phylogenetic-dependent codon usage analysis. We found that host- and natural reservoir-induced natural selection is the primary determinant of its biased codon choices, exceeding the mutational bias effect. The phylogenetic analysis of HTNV strains resulted in three distinct clades: South Korean, Russian, and Chinese. An effective number of codon (ENC) analysis showed a slightly biased codon usage in HTNV genomes. Nucleotide composition and RSCU analyses revealed a significant bias toward A/U nucleotides and A/U-ended codons, indicating the potential influence of mutational bias on the codon usage patterns of HTNV. Via ENC-plot, Parity Rule 2 (PR2), and neutrality plot analyses, we would conclude the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of HTNV; however, natural selection is the dominant factor influencing its codon usage bias. Codon adaptation index (CAI), Relative codon deoptimization index (RCDI), and Similarity Index (SiD) analyses uncovered the intense selection pressure from the host (Human) and natural reservoirs (Striped field mouse and Chinese white-bellied rat) in shaping HTNV biased codon choices. Our study clearly revealed the evolutionary processes in HTNV and the role of virus-host interaction in its evolution. Moreover, it opens the door for a more comprehensive codon usage analysis for all hantaviruses species to determine their molecular evolutionary dynamics and adaptability to several hosts and environments. We believe that our research will help in a better and deep understanding of HTNV evolution that will serve its future basic research and aid live attenuated vaccines design.
Collapse
Affiliation(s)
- Galal Ata
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Haoxiang Bai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
5
|
Beelagi MS, Kumar SRS, Indrabalan UB, Patil SS, Prasad A, Suresh KP, Kollur SP, Jayappa VS, Kakkalameli SB, Srinivasa C, Venkataravana PA, Shivamallu C. Synonymous codon usage pattern among the S, M, and L segments in Crimean-congo hemorrhagic fever virus. Bioinformation 2021; 17:479-491. [PMID: 34602775 PMCID: PMC8450151 DOI: 10.6026/97320630017479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) virus is one among the major zoonosis viral diseases that use the Hyalomma ticks as their transmission vector to cause viral infection to the human and mammalian community. The fatality of infectious is high across the world especially in Africa, Asia, Middle East, and Europe. This study regarding codon usage bias of S, M, and L segments of the CCHF virus pertaining to the host Homo sapiens, reveals in-depth information about the evolutionary characteristics of CCHFV. Relative Synonymous Codon Usage (RSCU), Effective number of codons (ENC) were calculated, to determine the codon usage pattern in each segment. Correlation analysis between Codon adaptation index (CAI), GRAVY (Hydrophobicity), AROMO (Aromaticity), and nucleotide composition revealed bias in the codon usage pattern. There was no strong codon bias found among any segments of the CCHF virus, indicating both the factors i.e., natural selection and mutational pressure shapes the codon usage bias.
Collapse
Affiliation(s)
- Mallikarjun S Beelagi
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - SR Santosh Kumar
- Department of Studies in Food Technology, Shivagangotri, Davangere University, Davangere Karnataka-577 007, India
| | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru-560064, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru-560064, India
| | - Ashwini Prasad
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru-570015, India
| | - KP Suresh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru-560064, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Mysuru, Amrita Vishwa Vidyapeetham, Karnataka - 570 026, India
| | - Veeresh Santhebennur Jayappa
- Department of Studies in Environmental Science, Shivagangotri, Davangere University, Davangere Karnataka-577 007, India
| | - Siddappa B Kakkalameli
- Department of Studies in Botany, Davangere University, Shivagangotri, Davangere Karnataka - 577 007, India
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Shivagangotri, Davangere Karnataka-577 007, India
| | | | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru-570015, India
| |
Collapse
|