1
|
João MED, Tavanti AG, de Vargas AN, Kmetzsch L, Staats CC. The influence of amoeba metal homeostasis on antifungal activity against Cryptococcus gattii. Genet Mol Biol 2024; 47:e20230320. [PMID: 39093931 PMCID: PMC11290705 DOI: 10.1590/1678-4685-gmb-2023-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/05/2024] [Indexed: 08/04/2024] Open
Abstract
Free-living amoebas are natural predators of fungi, including human pathogens of the Cryptococcus genus. To survive and proliferate inside phagocytes, cryptococcal cells must acquire several nutrients. Zinc is fundamental for all life forms and develops a crucial role in the virulence of fungal pathogens, phagocytes reduce the availability of this metal to reduce the development of infection. The Acanthamoeba castellanii ACA1_271600 gene codes a metal transporter that is possibly associated with such antifungal strategy. Here, we evaluated the impact of A. castellanii metal homeostasis on C. gattii survival. Gene silencing of ACA1_271600 was performed and the interaction outcome of amoeba cells with both WT and zinc homeostasis-impaired mutant cryptococcal cells was evaluated. Decreased levels of ACA1_271600 in silenced amoeba cells led to higher proliferation of such cryptococcal strains. This effect was more pronounced in the zip1 mutant of C. gattii, suggesting that ACA1_271600 gene product modulates metal availability in Cryptococcus-infected amoebae. In addition, a systems biology analysis allowed us to infer that ACA1_271600 may also be involved in other biological processes that could compromise amoebae activity over cryptococcal cells. These results support the hypothesis that A. castellanii can apply nutritional immunity to hamper cryptococcal survival.
Collapse
Affiliation(s)
- Maria Eduarda Deluca João
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de
Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto
Alegre, RS, Brazil
| | - Andrea Gomes Tavanti
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de
Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto
Alegre, RS, Brazil
| | - Alexandre Nascimento de Vargas
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de
Biociências, Departamento de Biologia Molecular e Biotecnologia, Porto Alegre, RS,
Brazil
| | - Livia Kmetzsch
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de
Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de
Biociências, Departamento de Biologia Molecular e Biotecnologia, Porto Alegre, RS,
Brazil
| | - Charley Christian Staats
- Universidade Federal do Rio Grande do Sul (UFRGS), Centro de
Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de
Biociências, Departamento de Biologia Molecular e Biotecnologia, Porto Alegre, RS,
Brazil
| |
Collapse
|
2
|
Beardsley J, Dao A, Keighley C, Garnham K, Halliday C, Chen SCA, Sorrell TC. What's New in Cryptococcus gattii: From Bench to Bedside and Beyond. J Fungi (Basel) 2022; 9:jof9010041. [PMID: 36675862 PMCID: PMC9865494 DOI: 10.3390/jof9010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Cryptococcus species are a major cause of life-threatening infections in immunocompromised and immunocompetent hosts. While most disease is caused by Cryptococcus neoformans, Cryptococcus gattii, a genotypically and phenotypically distinct species, is responsible for 11-33% of global cases of cryptococcosis. Despite best treatment, C. gattii infections are associated with early mortality rates of 10-25%. The World Health Organization's recently released Fungal Priority Pathogen List classified C. gattii as a medium-priority pathogen due to the lack of effective therapies and robust clinical and epidemiological data. This narrative review summarizes the latest research on the taxonomy, epidemiology, pathogenesis, laboratory testing, and management of C. gattii infections.
Collapse
Affiliation(s)
- Justin Beardsley
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Correspondence:
| | - Aiken Dao
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Caitlin Keighley
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
| | - Katherine Garnham
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Sunshine Coast University Hospital, Sunshine Coast University, Birtinya, QLD 4575, Australia
| | - Catriona Halliday
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Sydney, NSW 2145, Australia
| | - Sharon C.-A. Chen
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Sydney, NSW 2145, Australia
| | - Tania C. Sorrell
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| |
Collapse
|
3
|
Albehaijani SHI, Macreadie I, Morrissey CO, Boyce KJ. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac033. [PMID: 35402912 PMCID: PMC8986524 DOI: 10.1093/jacamr/dlac033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Fungal infections are common life-threatening diseases amongst immunodeficient individuals. Invasive fungal disease is commonly treated with an azole antifungal agent, resulting in selection pressure and the emergence of drug resistance. Antifungal resistance is associated with higher mortality rates and treatment failure, making the current clinical management of fungal disease very challenging. Clinical isolates from a variety of fungi have been shown to contain mutations in the MSH2 gene, encoding a component of the DNA mismatch repair pathway. Mutation of MSH2 results in an elevated mutation rate that can increase the opportunity for selectively advantageous mutations to occur, accelerating the development of antifungal resistance. Objectives To characterize the molecular mechanisms causing the microevolutionary emergence of antifungal resistance in msh2 mismatch repair mutants of Cryptococcus neoformans. Methods The mechanisms resulting in the emergence of antifungal resistance were investigated using WGS, characterization of deletion mutants and measuring ploidy changes. Results The genomes of resistant strains did not possess mutations in ERG11 or other genes of the ergosterol biosynthesis pathway. Antifungal resistance was due to small contributions from mutations in many genes. MSH2 does not directly affect ploidy changes. Conclusions This study provides evidence that resistance to fluconazole can evolve independently of ERG11 mutations. A common microevolutionary route to the emergence of antifungal resistance involves the accumulation of mutations that alter stress signalling, cellular efflux, membrane trafficking, epigenetic modification and aneuploidy. This complex pattern of microevolution highlights the significant challenges posed both to diagnosis and treatment of drug-resistant fungal pathogens.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - C. Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Kylie J. Boyce
- School of Science, RMIT University, Melbourne, VIC, Australia
- Corresponding author. E-mail:
| |
Collapse
|