1
|
Hashim NT, Babiker R, Chaitanya NCSK, Mohammed R, Priya SP, Padmanabhan V, Ahmed A, Dasnadi SP, Islam MS, Gismalla BG, Rahman MM. New Insights in Natural Bioactive Compounds for Periodontal Disease: Advanced Molecular Mechanisms and Therapeutic Potential. Molecules 2025; 30:807. [PMID: 40005119 PMCID: PMC11858609 DOI: 10.3390/molecules30040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Periodontal disease is a chronic inflammatory condition that destroys the tooth-supporting structures due to the host's immune response to microbial biofilms. Traditional periodontal treatments, such as scaling and root planing, pharmacological interventions, and surgical procedures, have significant limitations, including difficulty accessing deep periodontal pockets, biofilm recolonization, and the development of antibiotic resistance. In light of these challenges, natural bioactive compounds derived from plants, herbs, and other natural sources offer a promising alternative due to their anti-inflammatory, antioxidant, antimicrobial, and tissue-regenerative properties. This review focuses on the molecular mechanisms through which bioactive compounds, such as curcumin, resveratrol, epigallocatechin gallate (EGCG), baicalin, carvacrol, berberine, essential oils, and Gum Arabic, exert therapeutic effects in periodontal disease. Bioactive compounds inhibit critical inflammatory pathways like NF-κB, JAK/STAT, and MAPK while activating protective pathways such as Nrf2/ARE, reducing cytokine production and oxidative stress. They also inhibit the activity of matrix metalloproteinases (MMPs), preventing tissue degradation and promoting healing. In addition, these compounds have demonstrated the potential to disrupt bacterial biofilms by interfering with quorum sensing, targeting bacterial cell membranes, and enhancing antibiotic efficacy.Bioactive compounds also modulate the immune system by shifting the balance from pro-inflammatory to anti-inflammatory responses and promoting efferocytosis, which helps resolve inflammation and supports tissue regeneration. However, despite the promising potential of these compounds, challenges related to their poor bioavailability, stability in the oral cavity, and the absence of large-scale clinical trials need to be addressed. Future strategies should prioritize the development of advanced delivery systems like nanoparticles and hydrogels to enhance bioavailability and sustain release, alongside long-term studies to assess the effects of these compounds in human populations. Furthermore, combining bioactive compounds with traditional treatments could provide synergistic benefits in managing periodontal disease. This review aims to explore the therapeutic potential of natural bioactive compounds in managing periodontal disease, emphasizing their molecular mechanisms of action and offering insights into their integration with conventional therapies for a more comprehensive approach to periodontal health.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Science University, Ras-AlKhaimah 11127, United Arab Emirates;
| | - Nallan C. S. K. Chaitanya
- Department of Oral Medicine and Radiology, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Riham Mohammed
- Department Oral Surgery, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Sivan Padma Priya
- Oral Pathology Department, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Vivek Padmanabhan
- Department of Pediatric and Preventive Dentistry, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Ayman Ahmed
- Department of Periodontology and Implantology, Nile University, Khartoum 1847, Sudan;
| | - Shahista Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Md Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Bakri Gobara Gismalla
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| | - Muhammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| |
Collapse
|
2
|
Vinciguerra C, Bellia L, Corbi G, Rengo S, Cannavo A. Resveratrol supplementation as a non-surgical treatment in periodontitis and related systemic conditions. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Pouliou C, Piperi C. Advances of Oxidative Stress Impact in Periodontitis: Biomarkers and Effective Targeting Options. Curr Med Chem 2024; 31:6187-6203. [PMID: 38726786 DOI: 10.2174/0109298673297545240507091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 10/16/2024]
Abstract
Periodontitis is the most common inflammatory oral disease that affects around 15% of adults and contributes to severe periodontal tissue destruction with subsequent tooth loosening and loss. Among the main pathogenic mechanisms underlying periodontitis, excessive reactive oxygen species production and oxidative stress play a predominant role in inducing both local and systemic damage. Current therapeutic approaches have expanded the conventional methods combined with herbal antioxidant compounds to free radical-scavenging nanomaterials and infrared laser therapy, offering promising pre-clinical evidence in periodontitis management. Herein, we review the pathogenic mechanisms of reactive oxygen species tissue damage, along with recent advances in oxidative stress biomarkers and novel targeting options.
Collapse
Affiliation(s)
- Chrysi Pouliou
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
| | - Christina Piperi
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, 11527, Greece
| |
Collapse
|
4
|
Jayusman PA, Nasruddin NS, Mahamad Apandi NI, Ibrahim N, Budin SB. Therapeutic Potential of Polyphenol and Nanoparticles Mediated Delivery in Periodontal Inflammation: A Review of Current Trends and Future Perspectives. Front Pharmacol 2022; 13:847702. [PMID: 35903322 PMCID: PMC9315271 DOI: 10.3389/fphar.2022.847702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/21/2022] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is an oral inflammatory process involving the periodontium, which is mainly caused by the invasion of periodontopathogenic microorganisms that results in gingival connective tissue and alveolar bone destruction. Metabolic products of the oral pathogens and the associated host immune and inflammatory responses triggered are responsible for the local tissue destruction. Numerous studies in the past decades have demonstrated that natural polyphenols are capable of modulating the host inflammatory responses by targeting multiple inflammatory components. The proposed mechanism by which polyphenolic compounds exert their great potential is by regulating the immune cell, proinflammatory cytokines synthesis and gene expression. However, due to its low absorption and bioavailability, the beneficial effects of these substances are very limited and it hampers their use as a therapeutic agent. To address these limitations, targeted delivery systems by nanoencapsulation techniques have been explored in recent years. Nanoencapsulation of polyphenolic compounds with different carriers is an efficient and promising approach to boost their bioavailability, increase the efficiency and reduce the degradability of natural polyphenols. In this review, we focus on the effects of different polyphenolic substances in periodontal inflammation and to explore the pharmaceutical significance of polyphenol-loaded nanoparticles in controlling periodontitis, which may be useful for further enhancement of their efficacy as therapeutic agents for periodontal disease.
Collapse
Affiliation(s)
- Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Inaas Mahamad Apandi
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliwati Ibrahim
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Ng MY, Lin T, Chao SC, Chu PM, Yu CC. Potential Therapeutic Applications of Natural Compounds in Diabetes-Associated Periodontitis. J Clin Med 2022; 11:jcm11133614. [PMID: 35806899 PMCID: PMC9267692 DOI: 10.3390/jcm11133614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health burden. DM is a metabolic disease characterized by chronic hyperglycemia, and if left untreated, can lead to various complications. Individuals with uncontrolled DM are more susceptible to periodontitis due to both a hyper-inflammatory host response and an impaired immune response. Periodontitis, on the other hand, may exacerbate DM by increasing both local and systemic inflammatory components of DM-related complications. The current standard for periodontal treatment in diabetes-associated periodontitis (DP) focuses mostly on reducing bacterial load and less on controlling the excessive host response, and hence, may not be able to resolve DP completely. Over the past decade, natural compounds have emerged as an adjunct approach for modulating the host immune response with the hope of curing DP. The anti-oxidant, anti-inflammatory, and anti-diabetic characteristics of natural substances are well-known, and they can be found in regularly consumed foods and drinks, as well as plants. The pathophysiology of DP and the treatment benefits of various bioactive extracts for DP will be covered in this review.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yi-lan, Luodong 265501, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: ; Tel.: +886-4-2471-8668
| |
Collapse
|
6
|
|
7
|
Adhikari N, Prasad Aryal Y, Jung JK, Ha JH, Choi SY, Kim JY, Lee TH, Kim SH, Yamamoto H, Suh JY, An CH, Lee Y, Sohn WJ, An SY, Kim JY. Resveratrol enhances bone formation by modulating inflammation in the mouse periodontitis model. J Periodontal Res 2021; 56:735-745. [PMID: 33682929 DOI: 10.1111/jre.12870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the effect of resveratrol on periodontal bone regeneration after local delivery and to determine its effect on inflammatory mediators. BACKGROUND Resveratrol is considered an anti-inflammatory polyphenolic stilbene involved in the modulation of inflammation. MATERIALS AND METHODS Periodontitis was induced in mouse molars using a 5-day ligature model followed by the left second molar extraction and 50 µM resveratrol treatment for 1 and 2 weeks. We then examined specimens treated for 1 week histologically and with immunostaining. Microfocus-computed tomography (micro-CT) was used to examine the bone volume formation. RESULTS After 1 week of treatment, proinflammatory cytokine levels (TNF-alpha and IL6), cells exhibiting neutrophil and macrophage marker (MPO), cell proliferation marker (Ki67), and preosteoblastic marker (RUNX2) reactivity decreased in the resveratrol-treated specimens compared to the control group. In contrast, we observed a higher number of CD31-, F4/80-, and osteocalcin- (OCN-) positive cells in the resveratrol-treated specimens. After 2 weeks, micro-CT confirmed an increased bone mass in the region of the extraction socket in the resveratrol-treated group. CONCLUSION After 1 week, the resveratrol-treated specimens revealed evidence of inflammation modulation compared to the control group. These data suggest that resveratrol not only affects inflammation control but also is useful for treating periodontitis-related tissue defects and bone regeneration.
Collapse
Affiliation(s)
- Nirpesh Adhikari
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Division of Biotechnology and Convergence, Daegu Haany University, Gyeongsan, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| |
Collapse
|
8
|
Lim YRI, Preshaw PM, Lin H, Tan KS. Resveratrol and Its Analogs as Functional Foods in Periodontal Disease Management. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.636423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a common chronic inflammatory disease driven by the interaction between a dysbiotic oral microbiome and the dysregulated host immune-inflammatory response. Naturally derived nutraceuticals, such as resveratrol and its analogs, are potential adjunctive therapies in periodontal treatment due to their antimicrobial and anti-inflammatory properties. Furthermore, different analogs of resveratrol and the choice of solvents used may lead to varying effects on therapeutic properties. This review presents the current findings and gaps in our understanding on the potential utility of resveratrol and its analogs in periodontal treatment.
Collapse
|
9
|
Sczepanik FSC, Grossi ML, Casati M, Goldberg M, Glogauer M, Fine N, Tenenbaum HC. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontol 2000 2020; 84:45-68. [PMID: 32844417 DOI: 10.1111/prd.12342] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodontitis is a highly prevalent disease. As it progresses, it causes serious morbidity in the form of periodontal abscesses and tooth loss and, in the latter stages, pain. It is also now known that periodontitis is strongly associated with several nonoral diseases. Thus, patients with periodontitis are at greater risk for the development and/or exacerbation of diabetes, chronic obstructive pulmonary disease, and cardiovascular diseases, among other conditions. Although it is without question that specific groups of oral bacteria which populate dental plaque play a causative role in the development of periodontitis, it is now thought that once this disease has been triggered, other factors play an equal, and possibly more important, role in its progression, particularly in severe cases or in cases that prove difficult to treat. In this regard, we allude to the host response, specifically the notion that the host, once infected with oral periodontal pathogenic bacteria, will mount a defense response mediated largely through the innate immune system. The most abundant cell type of the innate immune system - polymorphonuclear neutrophils - can, when protecting the host from microbial invasion, mount a response that includes upregulation of proinflammatory cytokines, matrix metalloproteinases, and reactive oxygen species, all of which then contribute to the tissue damage and loss of teeth commonly associated with periodontitis. Of the mechanisms referred to here, we suggest that upregulation of reactive oxygen species might play one of the most important roles in the establishment and progression of periodontitis (as well as in other diseases of inflammation) through the development of oxidative stress. In this overview, we discuss both innate and epigenetic factors (eg, diabetes, smoking) that lead to the development of oxidative stress. This oxidative stress then provides an environment conducive to the destructive processes observed in periodontitis. Therefore, we shall describe some of the fundamental characteristics of oxidative stress and its effects on the periodontium, discuss the diseases and other factors that cause oxidative stress, and, finally, review potentially novel therapeutic approaches for the management (and possibly even the reversal) of periodontitis, which rely on the use of therapies, such as resveratrol and other antioxidants, that provide increased antioxidant activity in the host.
Collapse
Affiliation(s)
| | - Márcio Lima Grossi
- School of Health Sciences, Dentistry, Post-Graduate Program in Dentistry, Prosthodontics, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcio Casati
- Dental Research Division, School of Dentistry, Paulista University (UNIP), Sao Paulo, Brazil.,Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Michael Goldberg
- Discipline of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, University of Toronto, Toronto, ON, Canada.,Division of Periodontology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Howard C Tenenbaum
- Department of Dentistry, Mount Sinai Hospital, Thodupuzha, India.,Faculty of Dentistry, Centre for Advanced Dental Research and Care, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Pterostilbene complexed with cyclodextrin exerts antimicrobial and anti-inflammatory effects. Sci Rep 2020; 10:9072. [PMID: 32494020 PMCID: PMC7271226 DOI: 10.1038/s41598-020-66031-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Resveratrol (RES) is a natural polyphenol with potential as an adjunctive therapeutic modality for periodontitis. However, its inferior pharmacokinetics and toxicity concerns about its commonly used solvent dimethyl sulfoxide (DMSO) hinder translation to clinical applicability. Our study aimed to investigate the comparative antimicrobial properties of RES and its analogues (pterostilbene [PTS], oxyresveratrol [OXY] and piceatannol [PIC]), utilizing 2-hydroxypropyl-β-cyclodextrin (HPβCD) as a solubiliser, which has a well-documented safety profile and FDA approval. These properties were investigated against Fusobacterium nucleatum, a key periodontal pathogen. PTS demonstrated the most potent antibacterial effects in HPβCD, with MIC > 60-fold lower than that of RES, OXY and PIC. In addition, PTS inhibited F. nucleatum biofilm formation. PTS exerted antimicrobial effects by eliciting leakage of cellular contents, leading to loss of bacterial cell viability. PTS also conferred immunomodulatory effects on F. nucleatum-challenged macrophages via upregulation of antioxidant pathways and inhibition of NF-κB activation. Given the superior antimicrobial potency of PTS against F. nucleatum compared to RES and other analogues, and coupled with its immunomodulatory properties, PTS complexed with HPβCD holds promise as a candidate nutraceutical for the adjunctive treatment of periodontitis.
Collapse
|
11
|
DAŞ T, DAŞ G, KAPMAZ M. Resveratrolün Staphylococcus Aereus, Escherichia Coli, Pseudomonas Aeruginosa ve Candida Albicans Üzerindeki Antibakteryel ve Antifungal Etkilerinin in Vitro olarak Değerlendirilmesi. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2019. [DOI: 10.38079/igusabder.536195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Andrade EF, Orlando DR, Araújo AMS, de Andrade JNBM, Azzi DV, de Lima RR, Lobo-Júnior AR, Pereira LJ. Can Resveratrol Treatment Control the Progression of Induced Periodontal Disease? A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2019; 11:E953. [PMID: 31035477 PMCID: PMC6566182 DOI: 10.3390/nu11050953] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/29/2022] Open
Abstract
Resveratrol is an anti-inflammatory compound found in several foods. Periodontal disease (PD) is associated to other systemic diseases, and inflammation may be responsible for the association. Consequently, controlling inflammation not only may benefit oral health but also may assist with the management of other chronic inflammatory conditions. We aimed to investigate the effects of resveratrol administration on PD control in preclinical studies. A systematic search was performed for scientific articles using both electronic databases and a manual search using combinations of the following keywords: "resveratrol" OR "3,5,4'-trihydroxystilbene" AND "periodontal disease" OR "periodontitis" OR "gingivitis". Only in vivo original studies investigating resveratrol treatment on experimental animal models of PD were selected. A quality assessment of the studies was performed using the Animal Research Reporting In Vivo Experiment (ARRIVE) guidelines, and the risk of bias was assessed using the Syrcle tool. The search returned 570 articles, and 11 matched the inclusion criteria. A meta-analysis showed that resveratrol treatment attenuated alveolar bone loss (τ2 = 0.0041; 95% CI: -0.14; -0.04). The ARRIVE criteria reported a good quality of studies in general (mean score 28.5 ± 2.5). However, five Syrcle domains indicated a high risk of bias or did not present information clearly. We concluded that, in preclinical studies, resveratrol treatment prevented PD progression.
Collapse
Affiliation(s)
- Eric Francelino Andrade
- Institute of Agricultural Sciences, Universidade dos Vales do Jequitinhonha e Mucuri-UFVJM, Rua Vereador João Narciso, n.º 1380⁻Bairro Cachoeira, Unaí, Minas Gerais 38610-000, Brazil.
| | - Débora Ribeiro Orlando
- Institute of Agricultural Sciences, Universidade dos Vales do Jequitinhonha e Mucuri-UFVJM, Rua Vereador João Narciso, n.º 1380⁻Bairro Cachoeira, Unaí, Minas Gerais 38610-000, Brazil.
| | - Amanda Melo Sant'Anna Araújo
- Institute of Agricultural Sciences, Universidade dos Vales do Jequitinhonha e Mucuri-UFVJM, Rua Vereador João Narciso, n.º 1380⁻Bairro Cachoeira, Unaí, Minas Gerais 38610-000, Brazil.
| | - James Newton Bizetto Meira de Andrade
- Institute of Agricultural Sciences, Universidade dos Vales do Jequitinhonha e Mucuri-UFVJM, Rua Vereador João Narciso, n.º 1380⁻Bairro Cachoeira, Unaí, Minas Gerais 38610-000, Brazil.
| | - Diana Vilela Azzi
- Department of Veterinary Medicine, Universidade Federal de Lavras-UFLA, Mail Box 3037, Lavras, Minas Gerais 37200-000, Brazil.
| | - Renato Ribeiro de Lima
- Department of Exact Sciences, Universidade Federal de Lavras-UFLA, Mail Box 3037, Lavras, Minas Gerais 37200-000, Brazil.
| | - Adalfredo Rocha Lobo-Júnior
- Institute of Agricultural Sciences, Universidade dos Vales do Jequitinhonha e Mucuri-UFVJM, Rua Vereador João Narciso, n.º 1380⁻Bairro Cachoeira, Unaí, Minas Gerais 38610-000, Brazil.
| | - Luciano José Pereira
- Department of Veterinary Medicine, Universidade Federal de Lavras-UFLA, Mail Box 3037, Lavras, Minas Gerais 37200-000, Brazil.
- Department of Health Sciences, Universidade Federal de Lavras-UFLA, Mail Box 3037, Lavras, Minas Gerais 37200-000, Brazil.
| |
Collapse
|
13
|
Vestergaard M, Ingmer H. Antibacterial and antifungal properties of resveratrol. Int J Antimicrob Agents 2019; 53:716-723. [PMID: 30825504 DOI: 10.1016/j.ijantimicag.2019.02.015] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 12/30/2022]
Abstract
Resveratrol is a naturally occurring polyphenolic antioxidant that has received massive attention for its potential health benefits, including anticarcinogenesis, anti-aging and antimicrobial properties. The compound is well tolerated by humans and in recent years has been widely used as a nutraceutical. Its common use makes it interesting to investigate with respect to antimicrobial properties both as a single agent and in combination with conventional antibiotics. Resveratrol displays antimicrobial activity against a surprisingly wide range of bacterial, viral and fungal species. At subinhibitory concentrations, resveratrol can alter bacterial expression of virulence traits leading to reduced toxin production, inhibition of biofilm formation, reduced motility and interference with quorum sensing. In combination with conventional antibiotics, resveratrol enhances the activity of aminoglycosides against Staphylococcus aureus, whereas it antagonises the lethal activity of fluoroquinolones against S. aureus and Escherichia coli. Whilst the antimicrobial properties of the compound have been extensively studied in vitro, little is known about its efficacy in vivo. Nonetheless, following topical application resveratrol has alleviated acne lesions caused by the bacterium Propionibacterium acnes. There are currently no in vivo studies addressing its effect in combination with antibiotics, but recent research suggests that there may be a potential for enhancing the antimicrobial efficacy of certain existing antibiotic classes in combination with resveratrol. Given the difficulties associated with introducing new antimicrobial agents to the market, nutraceuticals such as resveratrol may prove to be interesting candidates when searching for solutions for the growing problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Anti-Inflammatory Effect of Melittin on Porphyromonas Gingivalis LPS-Stimulated Human Keratinocytes. Molecules 2018; 23:molecules23020332. [PMID: 29401750 PMCID: PMC6017529 DOI: 10.3390/molecules23020332] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that contributes to the destruction of the gingiva. Porphyromonas gingivalis (P. gingivalis) can cause periodontitis via its pathogenic lipopolysaccharides (LPS). Melittin, a major component of bee venom, is known to have anti-inflammatory and antibacterial effects. However, the role of melittin in the inflammatory response has not been elucidated in periodontitis-like human keratinocytes. Therefore, we investigated the anti-inflammatory effects of melittin on a P. gingivalis LPS (PgLPS)-treated HaCaT human keratinocyte cell line. The cytotoxicity of melittin was measured using a human keratinocyte cell line, HaCaT, and a Cell Counting Kit-8. The effect of melittin on PgLPS-induced inflammation was determined with Western blot, real-time quantitative PCT, and immunofluorescence. PgLPS increased the expression of toll-like receptor (TLR) 4 and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and interferon-γ (IFN-γ). Moreover, PgLPS induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B/Akt. Melittin also inhibited the expression of proinflammatory cytokines by suppressing the activation of the NF-κB signaling pathway, ERK, and Akt. Melittin attenuates the PgLPS-induced inflammatory response and could therefore be applied in the treatment of periodontitis for anti-inflammatory effects.
Collapse
|
15
|
Chin YT, Cheng GY, Shih YJ, Lin CY, Lin SJ, Lai HY, Whang-Peng J, Chiu HC, Lee SY, Fu E, Tang HY, Lin HY, Liu LF. Therapeutic applications of resveratrol and its derivatives on periodontitis. Ann N Y Acad Sci 2017; 1403:101-108. [DOI: 10.1111/nyas.13433] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yu-Tang Chin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- Department of Dentistry, Wan-Fang Medical Center; Taipei Medical University; Taipei Taiwan
| | - Guei-Yun Cheng
- Graduate Institute of Immunology, College of Medicine; National Taiwan University; Taipei Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - Shan-Jen Lin
- Department of Dentistry; Hsinchu MacKay Memorial Hospital; Hsinchu City Taiwan
| | - Hsuan-Yu Lai
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | | | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
| | - Sheng-Yang Lee
- Department of Dentistry, Wan-Fang Medical Center; Taipei Medical University; Taipei Taiwan
- School of Dentistry, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - Earl Fu
- Department of Dentistry; Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; New Taipei City Taiwan
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute; Albany College of Pharmacy and Health Sciences; Albany New York
| | - Hung-Yun Lin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - Leroy F Liu
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
16
|
Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol 2017; 13:606-620. [DOI: 10.1038/nrrheum.2017.132] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Ribeiro FV, Pino DS, Franck FC, Benatti BB, Tenenbaum H, Davies JE, Pimentel SP, Casarin RC, Cirano FR, Casati MZ. Resveratrol Inhibits Periodontitis-Related Bone Loss in Rats Subjected to Cigarette Smoke Inhalation. J Periodontol 2017; 88:788-798. [DOI: 10.1902/jop.2017.170025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Fernanda V. Ribeiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Danilo S. Pino
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Felipe C. Franck
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Bruno B. Benatti
- School of Dentistry, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Howard Tenenbaum
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto
- Department of Periodontics, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
- Sinai Health System, Chicago, IL
| | - John E. Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto
- Faculty of Dentistry, University of Toronto
| | - Suzana P. Pimentel
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Renato C. Casarin
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Fabiano R. Cirano
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Marcio Z. Casati
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Corrêa MG, Sacchetti SB, Ribeiro FV, Pimentel SP, Casarin RCV, Cirano FR, Casati MZ. Periodontitis increases rheumatic factor serum levels and citrullinated proteins in gingival tissues and alter cytokine balance in arthritic rats. PLoS One 2017; 12:e0174442. [PMID: 28358812 PMCID: PMC5373534 DOI: 10.1371/journal.pone.0174442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/09/2017] [Indexed: 01/10/2023] Open
Abstract
This study investigated some immunological features by experimental periodontitis (EP) and rheumatoid arthritis (RA) disease interact in destructive processes in arthritic rats. Rats were assigned to the following groups: EP +RA; RA; EP; and Negative Control. RA was induced by immunizations with type-II collagen and a local immunization with Complete Freund's adjuvant in the paw. Periodontitis was induced by ligating the right first molars. The serum level of rheumatoid factor (RF) and anti-citrullinated protein antibody (ACCPA) were measured before the induction of EP (T1) and at 28 days after (T2) by ELISA assay. ACCPA levels were also measured in the gingival tissue at T2. The specimens were processed for morphometric analysis of bone loss, and the gingival tissue surrounding the first molar was collected for the quantification of interleukin IL-1β, IL-4, IL-6, IL-17 and TNF-α using a Luminex/MAGpix assay. Paw edema was analyzed using a plethysmometer. Periodontitis increased the RF and ACCPA levels in the serum and in the gingival tissue, respectively. Besides, the level of paw swelling was increased by EP and remained in progress until the end of the experiment, when EP was associated with RA. Greater values of IL-17 were observed only when RA was present, in spite of PE. It can be concluded that periodontitis increases rheumatic factor serum levels and citrullinated proteins level in gingival tissues and alter cytokine balance in arthritic rats; at the same time, arthritis increases periodontal destruction, confirming the bidirectional interaction between diseases.
Collapse
Affiliation(s)
- Mônica G. Corrêa
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Silvana B. Sacchetti
- Pediatric Rheumatology Unit, Pediatric Rheumatology Unit, Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Vieira Ribeiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Suzana Peres Pimentel
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | | | - Fabiano Ribeiro Cirano
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Marcio Z. Casati
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|