1
|
Pandiselvam R, Tak Y, Olum E, Sujayasree OJ, Tekgül Y, Çalışkan Koç G, Kaur M, Nayi P, Kothakota A, Kumar M. Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: Impact on bioactive components, texture, color, and sensory properties of food. J Texture Stud 2022; 53:737-762. [PMID: 34743330 DOI: 10.1111/jtxs.12643] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022]
Abstract
The food industries are looking for potential preservation methods for fruits and vegetables. The combination of osmosis and drying has proved the efficient method to improve the food quality. Osmotic dehydration is a mass transfer process in which water molecules from the food move to an osmo-active solution and the solutes from the solution migrate into the food. Advanced osmotic dehydration techniques such as electric field pulse treatment, ultrasonic and microwave-assisted dehydration, pulsed vacuum, and osmodehydrofreezing can improve the nutritional quality (bioactive) and sensory properties (color, texture, aroma, flavor) of fresh and cut-fruits without changing their reliability. Emerging osmotic dehydration technologies can preserve the structure of fruit tissue by forming microscopic channels and increasing effective water diffusivity. However, it is important to analyze the effect of advanced osmotic dehydration techniques on the quality of food products to understand the industrial scalability of these techniques. The present paper discusses the impact of recent osmotic dehydration techniques on bioactive, antioxidant capacity, color, and sensory profile of food.
Collapse
Affiliation(s)
- Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala, India
| | - Yamini Tak
- Department of Biochemistry, Agriculture University, Kota, Rajasthan, India
| | - Emine Olum
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts Design and Architecture, Istanbul Medipol University, Istanbul, Turkey
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Yeliz Tekgül
- Food Processing Department, Kösk Vocational School, Aydın Adnan Menderes University, Aydin, Turkey
| | - Gülşah Çalışkan Koç
- Food Technology Program, Eşme Vocational High School, Uşak University, Uşak, Turkey
| | - Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pratik Nayi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung, Taiwan
| | - Anjineyulu Kothakota
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| |
Collapse
|