1
|
Okstaviyani E, Lestari PD, Kawiji K, Anandito RBK, Yulviatun A, Sefrienda AR, Muhammad DRA. Antioxidant, Physicochemical and Rheological Properties of White and Milk Chocolate Compounds Supplemented with Plant-Based Functional Ingredients. Foods 2024; 13:3694. [PMID: 39594108 PMCID: PMC11594057 DOI: 10.3390/foods13223694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Product development must be continuously done by the chocolate industry to face a high level of competitiveness in the market industry. This study investigates the effect of powdered sappan wood and butterfly pea flower incorporation in milk and white chocolate compounds. Four concentrations of each additional ingredient were used (0, 5, 10 and 15%). The results show that incorporating powdered sappan wood and butterfly pea flower significantly improved the total phenolic and flavonoid content and antioxidant activity of milk and white compounds. This study clearly shows that the selected plant could be an alternative to improve the health-promoting properties of milk and white chocolate compounds. However, supplementation also has some drawbacks, particularly in increasing the moisture content and the degree of colour difference between the milk and white compounds containing additional ingredients and the control. Also, powdered sappan wood and butterfly pea flower caused a higher viscosity of milk and white chocolate compounds. The results obtained in this study create a new strategy for using sappan wood and butterfly pea flower in various food products.
Collapse
Affiliation(s)
- Elinda Okstaviyani
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
| | - Puput Dwi Lestari
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
| | - Kawiji Kawiji
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
| | - Raden Baskara Katri Anandito
- Department of Agricultural Product Technology, Vocational School, Universitas Sebelas Maret, Jl. Kolonel Sutarto 150K, Jebres, Surakarta 57126, Indonesia
| | - Anastriyani Yulviatun
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
- Research and Development Center for Food, Nutrition and Public Health, Universitas Sebelas Maret, Jl. Ir Sutami 36A, Surakarta 57126, Indonesia
| | - Ardiba Rakhmi Sefrienda
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Jl. Yogya Wonosari, Km. 31.5, Gunungkidul, Yogyakarta 55861, Indonesia
| | - Dimas Rahadian Aji Muhammad
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
- Research and Development Center for Food, Nutrition and Public Health, Universitas Sebelas Maret, Jl. Ir Sutami 36A, Surakarta 57126, Indonesia
| |
Collapse
|
2
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|