1
|
Wang K, Ji Y, Peng C, Wang X, Yang L, Lan H, Xu J, Chen X. A Novel Quantification Method for Gene-Edited Animal Detection Based on ddPCR. BIOLOGY 2025; 14:203. [PMID: 40001971 PMCID: PMC11852154 DOI: 10.3390/biology14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
As gene-editing technologies continue to evolve, gene-edited products are making significant strides. These products have already been commercialized in the United States and Japan, prompting global attention to their safety and regulatory oversight. However, the detection of gene editing still relies on qPCR, and there is a lack of quantitative detection methods to quantify gene-editing components in products. To ensure consumer safety and transparency, we developed a novel droplet digital PCR (ddPCR)-based detection method for gene-edited products. Primers and probes were designed targeting the editing sites of MSTN-edited cattle, and the method was evaluated for specificity, sensitivity, real sample testing, and detection thresholds. Our results demonstrate that this ddPCR method is highly specific, with a detection limit of 5 copies/µL, and it successfully detected MSTN edits in all 11 tested samples. Tests using both actual gene-edited cattle samples and plasmid DNA at concentrations of 5%, 1%, and 0.01% yielded consistent results, indicating the method's suitability for real-world applications. This ddPCR assay provides a sensitive and specific tool for detecting MSTN gene-edited cattle and determining the presence of gene-edited products, offering crucial support for regulatory monitoring of gene-edited animal-derived foods.
Collapse
Affiliation(s)
- Kaili Wang
- School of Food Science and Engineering, Ningbo University, Ningbo 215211, China;
| | - Yi Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangzhen Lan
- School of Food Science and Engineering, Ningbo University, Ningbo 215211, China;
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Kasimanickam R, Ferreira JCP, Kastelic J, Kasimanickam V. Application of Genomic Selection in Beef Cattle Disease Prevention. Animals (Basel) 2025; 15:277. [PMID: 39858277 PMCID: PMC11759163 DOI: 10.3390/ani15020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Genomic applications in beef cattle disease prevention have gained traction in recent years, offering new strategies for improving herd health and reducing economic losses in the livestock industry. Advances in genomics, including identification of genetic markers linked to disease resistance, provide powerful tools for early detection, selection, and management of cattle resistant to infectious diseases. By incorporating genomic technologies such as whole-genome sequencing, genotyping, and transcriptomics, researchers can identify specific genetic variants associated with resistance to pathogens like bovine respiratory disease and Johne's disease. These genomic insights allow for more accurate breeding programs aimed at enhancing disease resistance and overall herd resilience. Genomic selection, in particular, enables identification of individuals with superior genetic traits for immune function, reducing the need for antibiotic treatments and improving animal welfare. Moreover, precision medicine, powered by genomic data, supports development of tailored health management strategies, including targeted vaccination plans and antimicrobial stewardship. Incorporation of genomic tools in beef cattle management also offers the potential for early disease detection, facilitating proactive interventions that reduce the spread of infections. Despite challenges like cost, data interpretation and integration into current management systems, the potential advantages of genomic applications in disease prevention are substantial. As these technologies advance, they are anticipated to have crucial roles in improving sustainability (by enhancing herd performance), profitability (by improving overall herd longevity), and biosecurity (by decreasing the likelihood of disease outbreaks) of beef cattle production systems worldwide.
Collapse
Affiliation(s)
- Ramanathan Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA; (J.C.P.F.); (V.K.)
| | - Joao Carlos Pinheiro Ferreira
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA; (J.C.P.F.); (V.K.)
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu 18618-681, Brazil
| | - John Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Vanmathy Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA; (J.C.P.F.); (V.K.)
| |
Collapse
|
3
|
Ghavi Hossein-Zadeh N. An overview of recent technological developments in bovine genomics. Vet Anim Sci 2024; 25:100382. [PMID: 39166173 PMCID: PMC11334705 DOI: 10.1016/j.vas.2024.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Cattle are regarded as highly valuable animals because of their milk, beef, dung, fur, and ability to draft. The scientific community has tried a number of strategies to improve the genetic makeup of bovine germplasm. To ensure higher returns for the dairy and beef industries, researchers face their greatest challenge in improving commercially important traits. One of the biggest developments in the last few decades in the creation of instruments for cattle genetic improvement is the discovery of the genome. Breeding livestock is being revolutionized by genomic selection made possible by the availability of medium- and high-density single nucleotide polymorphism (SNP) arrays coupled with sophisticated statistical techniques. It is becoming easier to access high-dimensional genomic data in cattle. Continuously declining genotyping costs and an increase in services that use genomic data to increase return on investment have both made a significant contribution to this. The field of genomics has come a long way thanks to groundbreaking discoveries such as radiation-hybrid mapping, in situ hybridization, synteny analysis, somatic cell genetics, cytogenetic maps, molecular markers, association studies for quantitative trait loci, high-throughput SNP genotyping, whole-genome shotgun sequencing to whole-genome mapping, and genome editing. These advancements have had a significant positive impact on the field of cattle genomics. This manuscript aimed to review recent advances in genomic technologies for cattle breeding and future prospects in this field.
Collapse
Affiliation(s)
- Navid Ghavi Hossein-Zadeh
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635-1314, Iran
| |
Collapse
|
4
|
Rahman MA, Chowdhury R, Islam KMS. Performance and nutritional status of Holstein crossbred cows in a selected area of Bangladesh under the existing farming system. J Adv Vet Anim Res 2024; 11:686-692. [PMID: 39605778 PMCID: PMC11590593 DOI: 10.5455/javar.2024.k818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives This study aimed to compare the body weight (BW), milk yield, nutritional status, and profitability of moderate genetic (MG) and high genetic (HG) merit of Holstein crossbred (HC) cows in a tropical region under the existing farming system. Materials and Methods Data was gathered from 204 nursing cows of MG (n = 99) and HG (n = 105) merit of HC cows throughout a year in the dairy zone Keraniganj, Bangladesh. HC cows of MG and HG merit contained 50.0%-67.7% and 75.0%-87.5% Holstein blood, respectively. Data on genetic merit, BW, lactation stage and number, daily milk yield, feed intake, feed, and milk price were documented. All variables were except genetic merit analyzed using one-way analysis of variance. Results HC cows of MG and HG merit had 433 and 493 kg BW (p < 0.01), and daily produced 11.99 and 14.06 kg milk (p = 0.07) with having 0.99 and 1.15 feed efficiency (p = 0.06), respectively but dry matter intake did not vary (p > 0.05). HC cows of both genetic merit daily offered surplus metabolizable energy and digestible crude protein through roughage and concentrate than their requirement (p > 0.05). The milk production cost of both genetic merit HC cows was alike (p > 0.05), whereas almost two times more profit was obtained in HG merit HC compared to MG merit HC cows (p < 0.05). Conclusion HC cows of HG merit showed superior potentiality of milk yield, profit, and feed efficiency, whereas MG merit HC cows revealed inferior feed efficiency and milk yield.
Collapse
Affiliation(s)
- Md Aliar Rahman
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rakhi Chowdhury
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Khan Md Shaiful Islam
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
5
|
Khan FA, Ali A, Wu D, Huang C, Zulfiqar H, Ali M, Ahmed B, Yousaf MR, Putri EM, Negara W, Imran M, Pandupuspitasari NS. Editing microbes to mitigate enteric methane emissions in livestock. World J Microbiol Biotechnol 2024; 40:300. [PMID: 39134917 DOI: 10.1007/s11274-024-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 10/17/2024]
Abstract
Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
Collapse
Affiliation(s)
- Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Azhar Ali
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Hamza Zulfiqar
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Ali
- Institute of Animal and Diary sciences, Faculty of Animal Husbandry, Agriculture University, Faisalabad, Pakistan
| | - Bilal Ahmed
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Rizwan Yousaf
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
6
|
Mariano CG, de Oliveira VC, Ambrósio CE. Gene editing in small and large animals for translational medicine: a review. Anim Reprod 2024; 21:e20230089. [PMID: 38628493 PMCID: PMC11019828 DOI: 10.1590/1984-3143-ar2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/16/2024] [Indexed: 04/19/2024] Open
Abstract
The CRISPR/Cas9 system is a simpler and more versatile method compared to other engineered nucleases such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), and since its discovery, the efficiency of CRISPR-based genome editing has increased to the point that multiple and different types of edits can be made simultaneously. These advances in gene editing have revolutionized biotechnology by enabling precise genome editing with greater simplicity and efficacy than ever before. This tool has been successfully applied to a wide range of animal species, including cattle, pigs, dogs, and other small animals. Engineered nucleases cut the genome at specific target positions, triggering the cell's mechanisms to repair the damage and introduce a mutation to a specific genomic site. This review discusses novel genome-based CRISPR/Cas9 editing tools, methods developed to improve efficiency and specificity, the use of gene-editing on animal models and translational medicine, and the main challenges and limitations of CRISPR-based gene-editing approaches.
Collapse
Affiliation(s)
- Clésio Gomes Mariano
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| |
Collapse
|