1
|
Zhu XH, Yu X, Kong XW, Zhang Y, Jiang SL, Chai JH, Liang J, Kuang HX, Xia YG. Insight of action mechanism of Astragaloside IV for relieving of cerebral ischemic injury in a rat model of middle cerebral artery occlusion reperfusion via proteomics and network pharmacology. J Nat Med 2025:10.1007/s11418-025-01892-9. [PMID: 40208491 DOI: 10.1007/s11418-025-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Astragaloside IV (AS-IV) is the principal active component of Astragalus membranaceus (fisch.) Bge. var. mongholicus (Bge.) Hsiao. This study aims to explore action mechanism of AS-IV for relieving of cerebral ischemic injury in a rat model of middle cerebral artery occlusion reperfusion (MCAO) via proteomics and network pharmacology. Pharmacodynamics experiments showed that AS-IV could effectively alleviate MACO-induced cerebral infarction, preserve the structural integrity of neurons, and promote the formation of Sol bodies. In addition, TMT quantitative proteomics revealed differential proteins (DEPs), e.g., DGKQ, PPT1, Gnai3, Gnal, PLA2G4A, and Ppp2ca. These DEPs might be closely related to AS-IV for the therapeutic effects on ischemic stroke. In combination with network pharmacology, the PLA2G4A was further identified as key target protein of AS-IV ascribed to its involvement in the regulation of inflammatory mediators in the TRP pathway. Ultimately, in vitro validation demonstrated that AS-IV offers neuroprotective effects by targeting the PLA2G4A, reducing the release of arachidonic acid (AA) and COX-2, and facilitating Ca2+ inflow into cells. This study provided a scientific basis on development and application of AS-IV for treating ischemic stroke.
Collapse
Affiliation(s)
- Xin-Hua Zhu
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xin Yu
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xiang-Wen Kong
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yi Zhang
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Jun-Hong Chai
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Bei Yao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China.
| |
Collapse
|
2
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
3
|
Chen YQ, Zhang YX, Zhang X, Lyu YM, Miao ZL, Liu XY, Duan XC. Mechanism and Application of Chinese Herb Medicine in Treatment of Peripheral Nerve Injury. Chin J Integr Med 2025; 31:270-280. [PMID: 39617868 DOI: 10.1007/s11655-024-4004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 02/26/2025]
Abstract
Peripheral nerve injury (PNI) encompasses damage to nerves located outside the central nervous system, adversely affecting both motor and sensory functions. Although peripheral nerves possess an intrinsic capacity for self-repair, severe injuries frequently result in significant tissue loss and erroneous axonal junctions, thereby impeding complete recovery and potentially causing neuropathic pain. Various therapeutic strategies, including surgical interventions, biomaterials, and pharmacological agents, have been developed to enhance nerve repair processes. While preclinical studies in animal models have demonstrated the efficacy of certain pharmacological agents in promoting nerve regeneration and mitigating inflammation, only a limited number of these agents have been translated into clinical practice to expedite nerve regeneration. Chinese herb medicine (CHM) possesses a longstanding history in the treatment of various ailments and demonstrates potential efficacy in addressing PNI through its distinctive, cost-effective, and multifaceted methodologies. This review critically examines the advancements in the application of CHM for PNI treatment and nerve regeneration. In particular, we have summarized the most commonly employed and rigorously investigated CHM prescriptions, individual herbs, and natural products, elucidating their respective functions and underlying mechanisms in the context of PNI treatment. Furthermore, we have deliberated on the prospective development of CHM in both clinical practice and fundamental research.
Collapse
Affiliation(s)
- Yu-Qing Chen
- School of Life Science, Nantong Laboratory of Development and Diseases, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226019, China
- Department of Pharmacy, Department of Endocrine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226006, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Yan-Xian Zhang
- School of Life Science, Nantong Laboratory of Development and Diseases, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226019, China
- Department of Pharmacy, Department of Endocrine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226006, China
| | - Xu Zhang
- Clinical Medical Research Center, Department of Neurosurgery, Wuxi No. 2 Peolpe's Hospital, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, 214002, China
| | - Yong-Mei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224007, China
| | - Zeng-Li Miao
- Clinical Medical Research Center, Department of Neurosurgery, Wuxi No. 2 Peolpe's Hospital, Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, 214002, China
| | - Xiao-Yu Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226019, China
| | - Xu-Chu Duan
- School of Life Science, Nantong Laboratory of Development and Diseases, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226019, China.
| |
Collapse
|
4
|
Zhou Y, Wang H, Zhu X, Zhao Q, Deng G, Li Y, Chen Q. Improving anti-oxidant stress treatment of subarachnoid hemorrhage through self-assembled nanoparticles of oleanolic acid. Drug Deliv 2024; 31:2388735. [PMID: 39169653 PMCID: PMC11342817 DOI: 10.1080/10717544.2024.2388735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular disease, with early brain injury (EBI) being the main cause of high mortality and severe neurological dysfunction. Oxidative stress plays a crucial role in the pathogenesis of EBI. In this study, we synthesized antioxidant stress nanoparticles based on self-assembled oleanolic acid (OA) using the solvent volatilization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques were employed to analyze and understand the self-assembly mechanism of oleic acid nanoparticles (OA NPs). The TUNEL assay, Nissl staining, and brain water content measurements were conducted to investigate the impact of OA NPs on cortical neuronal injury. Additionally, Western blot analysis was performed to investigate the antioxidant stress mechanism of OA NPs. The result showed that OA NPs exhibited a spherical structure with an average diameter of 168 nm. The application of OA NPs in SAH has been found to contribute to the reduction of keap1 protein levels and an increase in the nuclear level of Nrf2. As a result, the transcription of antioxidant stress proteins, including HO1 and NQO1, is triggered. The activation of the antioxidant stress pathway by OA NPs ultimately leads to a decrease in neuron damage and an improvement in neurological dysfunction. In conclusion, we successfully designed and synthesized OA NPs that can efficiently target the site of SAH. These nanoparticles have demonstrated their potential as antioxidants for the treatment of SAH, offering significant clinical applications.
Collapse
Affiliation(s)
- Youdong Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, China
| | - Hengyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qingyu Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
5
|
Tian X, Li X, Pan M, Yang LZ, Li Y, Fang W. Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cell Mol Neurobiol 2024; 44:25. [PMID: 38393376 PMCID: PMC10891262 DOI: 10.1007/s10571-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.
Collapse
Affiliation(s)
- Xinjuan Tian
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mengtian Pan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, State College, PA, 16801, USA
| | - Yunman Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|