1
|
Tu Y, Fan G, Xi H, Zeng T, Sun H, Cai X, Kong W. Identification of candidate aberrantly methylated and differentially expressed genes in thyroid cancer. J Cell Biochem 2018; 119:8797-8806. [PMID: 30069928 PMCID: PMC6220990 DOI: 10.1002/jcb.27129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022]
Abstract
Aberrant methylation of DNA sequences plays a criticle role in finding novel aberrantly methylated genes and pathways in thyroid cancer (THCA). This study aimed to integrate three cohorts profile datasets to find novel aberrantly methylated genes and pathways in THCA. Data of gene expression profiling microarrays (GSE33630 and GSE65144) and gene methylation profiling microarrays (GSE51090) were downloaded from the Gene Expression Omnibus database. Aberrantly methylated and differentially expressed genes were sorted and pathways were analyzed. Functional and enrichment analyses of selected genes were performed using the String database. A protein‐protein interaction network was constructed using the Cytoscape software, and module analysis was performed using Molecular Complex detection. In total, we identified 12 hypomethylation/high‐expression genes and 30 hypermethylation/low‐expression genes at the screening step and, finally, found 6 mostly changed hub genes including PPARGC1A, CREBBP, EP300, CD44, SPP1, and MMP9. Pathway analysis showed that aberrantly methylated differentially expressed genes were mainly associated with the thyroid hormone signaling pathway, AMP‐activated protein kinase (AMPK) signaling pathway, and cell cycle process in THCA. After validation in the Cancer Genome Atlas database, the methylation and expression status of hub genes was significantly altered and the same with our results. Taken together, we identified novel aberrantly methylated genes and pathways in THCA, which could improve our understanding of the cause and underlying molecular events, and these candidate genes could serve as aberrant methylation‐based biomarkers for precise diagnosis and treatment of THCA.
Collapse
Affiliation(s)
- Yaqin Tu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guorun Fan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongli Xi
- Department of Clinical laboratory, Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Pease LI, Clegg PD, Proctor CJ, Shanley DJ, Cockell SJ, Peffers MJ. Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females. Sci Rep 2017; 7:14443. [PMID: 29089527 PMCID: PMC5663855 DOI: 10.1038/s41598-017-14650-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/13/2017] [Indexed: 01/21/2023] Open
Abstract
The development of tendinopathy is influenced by a variety of factors including age, gender, sex hormones and diabetes status. Cross platform comparative analysis of transcriptomic data elucidated the connections between these entities in the context of ageing. Tissue-engineered tendons differentiated from bone marrow derived mesenchymal stem cells from young (20-24 years) and old (54-70 years) donors were assayed using ribonucleic acid sequencing (RNA-seq). Extension of the experiment to microarray and RNA-seq data from tendon identified gender specific gene expression changes highlighting disparity with existing literature and published pathways. Separation of RNA-seq data by sex revealed underlying negative binomial distributions which increased statistical power. Sex specific de novo transcriptome assemblies generated fewer larger transcripts that contained miRNAs, lincRNAs and snoRNAs. The results identify that in old males decreased expression of CRABP2 leads to cell proliferation, whereas in old females it leads to cellular senescence. In conjunction with existing literature the results explain gender disparity in the development and types of degenerative diseases as well as highlighting a wide range of considerations for the analysis of transcriptomic data. Wider implications are that degenerative diseases may need to be treated differently in males and females because alternative mechanisms may be involved.
Collapse
Affiliation(s)
- Louise I Pease
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Peter D Clegg
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Carole J Proctor
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Daryl J Shanley
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Simon J Cockell
- Faculty of Medical Sciences, Bioinformatics Support Unit, Framlington Place, Newcastle University, Newcastle, NE2 4HH, UK
| | - Mandy J Peffers
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK.
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
| |
Collapse
|
3
|
Lnc-ATB contributes to gastric cancer growth through a MiR-141-3p/TGFβ2 feedback loop. Biochem Biophys Res Commun 2017; 484:514-521. [PMID: 28115163 DOI: 10.1016/j.bbrc.2017.01.094] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/17/2022]
Abstract
The long noncoding RNA (lncRNA) ATB is an important regulator in human tumors. Here, we aimed to investigate the potential molecular mechanisms of lnc-ATB in gastric cancer (GC) tumorigenesis. RT-qPCR analysis was used to detect lnc-ATB expression level in 20 pairs of gastric cancer tissues and adjacent normal gastric mucosa tissues (ANTs). Moreover, the biological role of lnc-ATB was determined in vitro. We found that lnc-ATB was significantly upregulated in GC tissues compared to lnc-ATB expression in ANTs. These high lnc-ATB expression levels predicted poor prognosis in GC patients. Low levels of lnc-ATB inhibited GC cell proliferation and cell cycle arrest in vitro. Lnc-ATB was found to directly bind miR-141-3p. Moreover, TGF-β actives lnc-ATB and TGF-β2 directly binds mir-141-3p. Finally, we demonstrated that lnc-ATB fulfilled its oncogenic roles in a ceRNA-mediated manner. Our study suggests that lnc-ATB promotes tumor progression by interacting with miR-141-3p and that Lnc-ATB may be a valuable prognostic predictor for GC. In conclusion, the positive feedback loop of lnc-ATB/miR-141-3p/TGF-β2 may be a potential therapeutic target for the treatment of GC.
Collapse
|
4
|
Lima CR, Geraldo MV, Fuziwara CS, Kimura ET, Santos MF. MiRNA-146b-5p upregulates migration and invasion of different Papillary Thyroid Carcinoma cells. BMC Cancer 2016; 16:108. [PMID: 26883911 PMCID: PMC4754828 DOI: 10.1186/s12885-016-2146-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 02/08/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Tumor invasiveness is directly related to the ability of tumor cells to migrate and invade surrounding tissues, usually degrading extracellular matrix. Despite significant progress in the knowledge about migration and invasion, there is much more to elucidate about their regulatory mechanisms, especially in cancer cells. MicroRNAs (miRs) were recently described as important regulators of migration. Differential expression of miRs in cancer is frequently associated with progression, invasion and metastasis. In papillary thyroid carcinoma (PTC), miR-146b-5p is highly expressed and positively correlated to the degree of malignancy. METHODS This study aimed to investigate the role of miR-146b-5p on the migratory and invasive behaviors of thyroid cells, using a non tumor rat thyroid follicular cell line (PCCl3) transfected with the miR-146b-5p genomic region, and two PTC cell lines (TPC-1 and BCPAP, bearing distinct oncogenic backgrounds), which express high levels of miR-146b-5p, after miR-146b inhibition by antagomiR and miR-146b overexpression by mimics-miR. Migration and invasion were studied by time-lapse and transwell assays (with and without Matrigel®). Gelatin degradation assays were also employed, as well as F-actin staining. RESULTS Migration and invasion of PCCl3 were increased 2-3x after miR-146b-5p overexpression (10X) and large lamellipodia were evident in those cells. After miR-146b-5p inhibition, TPC-1 and BCPAP migration and invasion were significantly reduced, with cells showing several simultaneous processes and low polarity. Gelatin degradation was inhibited in TPC-1 cells after inhibition of miR-146b-5p, but was unaffected in BCPAP cells, which did not degrade gelatin. The inhibition of miR-146b-5p in PCCl3 also inhibited migration and invasion, and additional (exogenous) overexpression of this miR in TPC-1 and BCPAP cells increased migration and invasion, without effects on cell morphology or gelatin degradation. The overexpression of SMAD4 in BCPAP cells, a validated target of miR-146b-5p and key protein in the TGF-β signaling pathway, inhibited migration similarly to the effects observed with the antagomiR 146b-5p. CONCLUSIONS miR-146b-5p positively regulates migration and invasion of thyroid normal and tumor follicular cells (independently from their original mutation, either BRAF or RET/PTC), through a mechanism that involves the actin cytoskeleton but not an increased capacity of matrix degradation.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Murilo Vieira Geraldo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Araujo SC, Maltarollo VG, Honorio KM. Computational studies of TGF-βRI (ALK-5) inhibitors: analysis of the binding interactions between ligand-receptor using 2D and 3D techniques. Eur J Pharm Sci 2013; 49:542-9. [PMID: 23727056 DOI: 10.1016/j.ejps.2013.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 11/25/2022]
Abstract
ALK-5 (Activin-Like Kinase 5) is a biological receptor involved in a variety of pathological processes such as cancer and fibrosis. ALK-5 receptor propagates an intracellular signaling that forms a protein complex capable of reaching the nucleus and modulating the gene transcription. In the present study, comparative molecular field analysis (CoMFA) and hologram quantitative structure-activity relationship (HQSAR) studies were conducted on a series of potent ALK-5 inhibitors. Significant correlation coefficients (CoMFA, r(2)=0.99 and q(2)=0.85; HQSAR, r(2)=0.92 and q(2)=0.72) were obtained, indicating the predictive potential of the 2D and 3D models for untested compounds. The models were then used to predict the potency of a test set, and the predicted values from the HQSAR and CoMFA models were in good agreement with the experimental results. The final QSAR models, along with the information obtained from 3D (steric and electrostatic) contour maps and 2D contribution maps, can be useful for the design of novel bioactive ligands.
Collapse
Affiliation(s)
- Sheila C Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, R. Santa Adélia 166, 09210-170 Santo André, SP, Brazil
| | | | | |
Collapse
|
6
|
TGF-beta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 2012; 460:587-600. [DOI: 10.1007/s00428-012-1234-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/13/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
|
7
|
Miranda ERD, De Marco L, Soares MMS. Splicing variants impact in thyroid normal physiology and pathological conditions. ACTA ACUST UNITED AC 2010; 53:709-15. [PMID: 19893912 DOI: 10.1590/s0004-27302009000600003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/20/2009] [Indexed: 11/22/2022]
Abstract
RNA splicing is an essential, precisely regulated process that occurs after gene transcription and before mRNA translation, in which introns may be removed and exons, retained. Variability in splicing patterns is a major source of protein diversity from the genome and function to generate a tremendously diverse proteome from a relatively small number of genes. Changes in splice site choice can determine different effects on the encoded protein. Small changes in peptide sequence can alter ligand binding, enzymatic activity, allosteric regulation, or protein localization. Errors in splicing regulation have been implicated in a number of different disease states. This study reviewed the mechanisms of splicing and their repercussion in endocrinology, emphasizing its importance in some thyroid physiological and pathological conditions.
Collapse
|
8
|
Fiore APZP, Fuziwara CS, Kimura ET. High iodine concentration attenuates RET/PTC3 oncogene activation in thyroid follicular cells. Thyroid 2009; 19:1249-56. [PMID: 19725779 DOI: 10.1089/thy.2008.0408] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is frequently associated with a RET gene rearrangement that generates a RET/PTC oncogene. RET/PTC is a fusion of the tyrosine kinase domain of RET to the 5' portion of a different gene. This fusion results in a constitutively active MAPK pathway, which plays a key role in PTC development. The RET/PTC3 fusion is primarily associated with radiation-related PTC. Epidemiological studies show a lower incidence of PTC in radiation-exposed regions that are associated with an iodine-rich diet. Since the influence of excess iodine on the development of thyroid cancer is still unclear, the aim of this study is to evaluate the effect of high iodine concentrations on RET/PTC3-activated thyroid cells. METHODS PTC3-5 cells, a rat thyroid cell lineage harboring doxycycline-inducible RET/PTC3, were treated with 10(-3) M NaI. Cell growth was analyzed by cell counting and the MTT assay. The expression and phosphorylation state of MAPK pathway-related (Braf, Erk, pErk, and pRet) and thyroid-specific (natrium-iodide symporter [Nis] and thyroid-stimulating hormone receptor [Tshr]) proteins were analyzed by Western blotting. Thyroid-specific gene expression was further analyzed by quantitative reverse transcription (RT)-polymerase chain reaction. RESULTS A significant inhibition of proliferation was observed, along with no significant variation in cell death rate, in the iodine-treated cells. Further, iodine treatment attenuated the loss of Nis and Tshr gene and protein expression induced by RET/PTC3 oncogene induction. Finally, iodine treatment reduced Ret and Erk phosphorylation, without altering Braf and Erk expression. CONCLUSION Our results indicate an antioncogenic role for excess iodine during thyroid oncogenic activation. These findings contribute to a better understanding of the effect of iodine on thyroid follicular cells, particularly how it may play a protective role during RET/PTC3 oncogene activation.
Collapse
Affiliation(s)
- Ana Paula Zen Petisco Fiore
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | | |
Collapse
|