1
|
Wainberg RC, Martins WA, de Oliveira FH, Paglioli E, Paganin R, Soder R, Paglioli R, Frigeri TM, Baldisseroto M, Palmini A. Histopathological substrate of increased T2 signal in the anterior temporal lobe white matter in temporal lobe epilepsy associated with hippocampal sclerosis. Epilepsia 2025; 66:279-287. [PMID: 39503609 DOI: 10.1111/epi.18162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE This study was undertaken to analyze the histology underlying increased T2 signal intensity (iT2SI) in anterior temporal lobe white matter (aTLWM) epilepsy due to hippocampal sclerosis (TLE/HS). METHODS Twenty-three patients were included: 16 with increased T2 signal in the aTLWM and seven with HS only. Magnetic resonance imaging (MRI) findings were consistent across two neuroradiologists (kappa = .89, p < .001). Quantification of neuronal cells, astrocytes, oligodendrocytes, and vacuolization in the white matter of temporal lobe specimens was performed by immunohistochemistry (neuronal nuclear antigen, glial fibrillary acidic protein, oligodendrocyte transcription factor, and basic myelin protein, respectively). Surgical specimens from TLE/HS patients with and without iT2SI in the aTLWM were compared. Samples of aTLWM were divided into three groups, according to MRI features: G1 = samples of iT2SI, G2 = samples with normal T2 signal intensity from patients without white matter imaging abnormalities, and G3 = samples with normal T2 signal intensity adjacent to areas with iT2SI. RESULTS Patients with increased T2 signal had a significantly younger age at epilepsy onset (p < .035). Histological analysis revealed a higher percentage of vacuolar area in these patients (p < .004) along with a lower number of ectopic neurons (p = .042). No significant differences were found in astrocyte or oligodendrocyte counts among groups. SIGNIFICANCE A higher proportion of vacuoles in regions with iT2SI may be the histopathologic substrate of this signal alteration in the white matter of the temporal lobe in patients with TLE/HS. This method of quantifying vacuoles using digital image analysis proved reliable and cost-effective.
Collapse
Affiliation(s)
| | - William Alves Martins
- Porto Alegre Epilepsy Surgery Program, Neurology and Neurosurgery Services, Hospital São Lucas, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
- Brain Institute, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Francine H de Oliveira
- Department of Pathology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Service of Neurosurgery, Hospital São Lucas, Porto Alegre, Brazil
- Porto Alegre Epilepsy Surgery Program, Neurology and Neurosurgery Services, Hospital São Lucas, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ricardo Paganin
- Porto Alegre Epilepsy Surgery Program, Neurology and Neurosurgery Services, Hospital São Lucas, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
- Brain Institute, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ricardo Soder
- Porto Alegre Epilepsy Surgery Program, Neurology and Neurosurgery Services, Hospital São Lucas, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
- Brain Institute, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Rafael Paglioli
- Service of Neurosurgery, Hospital São Lucas, Porto Alegre, Brazil
- Porto Alegre Epilepsy Surgery Program, Neurology and Neurosurgery Services, Hospital São Lucas, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Thomas M Frigeri
- Service of Neurosurgery, Hospital São Lucas, Porto Alegre, Brazil
- Porto Alegre Epilepsy Surgery Program, Neurology and Neurosurgery Services, Hospital São Lucas, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Matteo Baldisseroto
- Brain Institute, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - André Palmini
- Porto Alegre Epilepsy Surgery Program, Neurology and Neurosurgery Services, Hospital São Lucas, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
- Brain Institute, Pontifícia Universidade Católica Do Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Li Y, Liu P, Lin Q, Li W, Zhang Y, Li J, Li X, Gong Q, Zhang H, Li L, Sima X, Cao D, Huang X, Huang K, Zhou D, An D. Temporopolar blurring signifies abnormalities of white matter in mesial temporal lobe epilepsy. Ann Clin Transl Neurol 2024; 11:2932-2945. [PMID: 39342438 PMCID: PMC11572732 DOI: 10.1002/acn3.52204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE The single-center retrospective cohort study investigated underlying pathogenic mechanisms and clinical significance of patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), in the presence/absence of gray-white matter abnormalities (usually called "blurring"; GMB) in ipsilateral temporopolar region (TPR) on MRI. METHODS The study involved 105 patients with unilateral TLE-HS (60 GMB+ and 45 GMB-) who underwent standard anterior temporal lobectomy, along with 61 healthy controls. Resected specimens were examined under light microscope. With combined T1-weighted and DTI data, we quantitatively compared large-scale morphometric features and exacted diffusion parameters of ipsilateral TPR-related superficial and deep white matter (WM) by atlas-based segmentation. Along-tract analysis was added to detect heterogeneous microstructural alterations at various points along deep WM tracts, which were categorized into inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and temporal cingulum. RESULTS Comparable seizure semiology and postoperative seizure outcome were found, while the GMB+ group had significantly higher rate of HS Type 1 and history of febrile seizures, contrasting with significantly lower proportion of interictal contralateral epileptiform discharges, HS Type 2, and increased wasteosomes in hippocampal specimens. Similar morphometric features but greater WM atrophy with more diffusion abnormalities of superficial WM was observed adjacent to ipsilateral TPR in the GMB+ group. Moreover, microstructural alterations resulting from temporopolar GMB were more localized in temporal cingulum while evenly and widely distributed along ILF and UF. INTERPRETATION Temporopolar GMB could signify more severe and widespread microstructural damage of white matter rather than a focal cortical lesion in TLE-HS, affecting selection of surgical procedures.
Collapse
Affiliation(s)
- Yuming Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Peiwen Liu
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Qiuxing Lin
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Wei Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Yingying Zhang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Jinmei Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiuli Li
- Huaxi MR Research Center, Department of RadiologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of RadiologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Heng Zhang
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengdu610041China
| | - Luying Li
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiutian Sima
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengdu610041China
| | - Danyang Cao
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiang Huang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Kailing Huang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Dongmei An
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| |
Collapse
|
3
|
Varatharajaperumal RK, Arkar R, Arunachalam VK, Renganathan R, Varatharajan S, Mehta P, Cherian M. Comparison of T2 relaxometry and PET CT in the evaluation of patients with mesial temporal lobe epilepsy using video EEG as the reference standard. Pol J Radiol 2021; 86:e601-e607. [PMID: 34876941 PMCID: PMC8634420 DOI: 10.5114/pjr.2021.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Our study aimed to compare the sensitivity of T2 relaxometry and positron emission tomography - computed tomography (PET/CT) in patients with a history suggestive of mesial temporal lobe epilepsy using video electroencephalography (EEG) as the reference standard. MATERIAL AND METHODS In our study, 35 patients with a history suggestive of mesial temporal lobe epilepsy were subjected to conventional magnetic resonance imaging (MRI), T2 relaxometry, and PET/CT. The results of each of the studies were compared with video EEG findings. Analyses were performed by using statistical software (SPSS version 20.0 for windows), and the sensitivity of conventional MRI, T2 relaxometry, and PET/CT were calculated. RESULTS The sensitivity of qualitative MRI (atrophy and T2 hyperintensity), quantitative MRI (T2 relaxometry), and PET/CT in lateralizing the seizure focus were 68.6% (n = 24), 85.7% (n = 30), and 88.6% (n = 31), respectively. CONCLUSIONS The sensitivity of MRI in lateralization and localization of seizure focus in temporal lobe epilepsy can be increased by adding the quantitative parameter (T2 relaxometry) with the conventional sequences. T2 Relaxometry is comparable to PET/CT for localization and lateralization of seizure focus and is a useful tool in the workup of TLE patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Pankaj Mehta
- Kovai Medical Centre and Hospital, Coimbatore, India
| | | |
Collapse
|
4
|
Parlak S, Coban G, Gumeler E, Karakaya J, Soylemezoglu F, Tezer I, Bilginer B, Saygi S, Oguz KK. Reduced myelin in patients with isolated hippocampal sclerosis as assessed by SyMRI. Neuroradiology 2021; 64:99-107. [PMID: 34611716 PMCID: PMC8492040 DOI: 10.1007/s00234-021-02824-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/25/2021] [Indexed: 02/05/2023]
Abstract
Purpose Synthetic MRI (SyMRI) enables to quantify brain tissue and morphometry. We aimed to investigate the WM and myelin alterations in patients with unilateral hippocampal sclerosis (HS) with SyMRI. Methods Adult patients with isolated unilateral HS and age-matched control subjects (CSs) were included in this study. The SyMRI sequence QRAPMASTER in the coronal plane perpendicular to the hippocampi was obtained from the whole brain. Automatic segmentation of the whole brain was processed by SyMRI Diagnostic software (Version 11.2). Two neuroradiologists also performed quantitative analyses independently from symmetrical 14 ROIs placed in temporal and extratemporal WM, hippocampi, and amygdalae in both hemispheres. Results Sixteen patients (F/M = 6/10, mean age = 32.5 ± 11.3 years; right/left HS: 8/8) and 10 CSs (F/M = 5/5, mean age = 30.7 ± 7 years) were included. Left HS patients had significantly lower myelin and WM volumes than CSs (p < .05). Myelin was reduced significantly in the ipsilateral temporal lobe of patients than CSs, greater in left HS (p < .05). Histopathological examination including luxol fast blue stain also revealed myelin pallor in all of 6 patients who were operated. Ipsilateral temporal pole and sub-insular WM had significantly reduced myelin than the corresponding contralateral regions in patients (p < .05). No significant difference was found in WM values. GM values were significantly lower in hippocampi in patients than CSs (p < .05). Conclusion SyMRI revealed myelin reduction in the ipsilateral temporal lobe and sub-insular WM of patients with HS. Whether this finding correlates with electrophysiological features and SyMRI could serve as lateralization of temporal lobe epilepsy need to be investigated. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02824-6.
Collapse
Affiliation(s)
- Safak Parlak
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Gokcen Coban
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ekim Gumeler
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Jale Karakaya
- Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Figen Soylemezoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Irsel Tezer
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Burcak Bilginer
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Serap Saygi
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kader K Oguz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Temporal pole abnormalities detected by 3 T MRI in temporal lobe epilepsy due to hippocampal sclerosis: No influence on seizure outcome after surgery. Seizure 2017; 48:74-78. [DOI: 10.1016/j.seizure.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/21/2017] [Accepted: 04/08/2017] [Indexed: 11/17/2022] Open
|
6
|
Di Gennaro G, D'Aniello A, De Risi M, Grillea G, Quarato PP, Mascia A, Grammaldo LG, Casciato S, Morace R, Esposito V, Picardi A. Temporal pole abnormalities in temporal lobe epilepsy with hippocampal sclerosis: Clinical significance and seizure outcome after surgery. Seizure 2015; 32:84-91. [PMID: 26552570 DOI: 10.1016/j.seizure.2015.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/16/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To assess the clinical significance of temporal pole abnormalities (temporopolar blurring, TB, and temporopolar atrophy, TA) in patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS) with a long post-surgical follow-up. METHODS We studied 60 consecutive patients with TLE-HS and 1.5 preoperative MRI scans who underwent surgery and were followed up for at least 5 years (mean follow-up 7.3 years). Based on findings of pre-surgical MRI, patients were classified according to the presence of TB or TA. Groups were compared on demographic, clinical, neuropsychological data, and seizure outcome. RESULTS TB was found in 37 (62%) patients, while TA was found in 35 (58%) patients, always ipsilateral to HS, with a high degree of overlap (83%) between TB and TA (p<0.001). Patients with TB did not differ from those without TB with regard to history of febrile convulsions, GTCSs, age of epilepsy onset, side of surgery, seizure frequency, seizure outcome, and neuropsychological outcome. On the other hand, they were significantly older, had a longer duration of epilepsy, and displayed lower preoperative scores on several neuropsychological tests. Similar findings were observed for TA. Multivariate analysis corroborated the association between temporopolar abnormalities and age at onset, age at surgery (for TB only), and lower preoperative scores on some neuropsychological tests. CONCLUSIONS Temporopolar abnormalities are frequent in patients with TLE-HS. Our data support the hypothesis that TB and TA are caused by seizure-related damages. These abnormalities did not influence seizure outcome, even after a long-term post-surgical follow-up.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sara Casciato
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy
| | | | - Vincenzo Esposito
- IRCCS "NEUROMED", Pozzilli, IS, Italy; Department of Neurosurgery, Sapienza University of Rome, Italy
| | - Angelo Picardi
- Mental Health Unit, Centre of Epidemiology, Surveillance and Health Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
7
|
Temporopolar blurring in temporal lobe epilepsy with hippocampal sclerosis and long-term prognosis after epilepsy surgery. Epilepsy Res 2015; 112:76-83. [DOI: 10.1016/j.eplepsyres.2015.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/14/2015] [Accepted: 02/17/2015] [Indexed: 11/20/2022]
|
8
|
Caboclo LOSF, Neves RS, Jardim AP, Hamad APA, Centeno RS, Lancellotti CLP, Scorza CA, Cavalheiro EA, Yacubian EMT, Sakamoto AC. Surgical and postmortem pathology studies: contribution for the investigation of temporal lobe epilepsy. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 70:945-52. [PMID: 23295424 DOI: 10.1590/s0004-282x2012001200009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/17/2012] [Indexed: 11/21/2022]
Abstract
Pathology studies in epilepsy patients bring useful information for comprehending the physiopathology of various forms of epilepsy, as well as aspects related to response to treatment and long-term prognosis. These studies are usually restricted to surgical specimens obtained from patients with refractory focal epilepsies. Therefore, most of them pertain to temporal lobe epilepsy (TLE) with mesial temporal sclerosis (MTS) and malformations of cortical development (MCD), thus providing information of a selected group of patients and restricted regions of the brain. Postmortem whole brain studies are rarely performed in epilepsy patients, however they may provide extensive information on brain pathology, allowing the analysis of areas beyond the putative epileptogenic zone. In this article, we reviewed pathology studies performed in epilepsy patients with emphasis on neuropathological findings in TLE with MTS and MCD. Furthermore, we reviewed data from postmortem studies and discussed the importance of performing these studies in epilepsy populations.
Collapse
|
9
|
Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging. Eur Radiol 2012; 23:3-11. [PMID: 22811046 DOI: 10.1007/s00330-012-2565-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/17/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES To investigate the diagnostic capability of anterior temporal lobe white matter abnormal signal (ATLAS) for determining seizure focus laterality in temporal lobe epilepsy (TLE) by comparing different MR sequences. METHODS This prospective study was approved by the institutional review board and written informed consent was obtained. Three 3D sequences (double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging (T2WI)) and two 2D sequences (FLAIR and T2WI) were acquired at 3 T. Signal changes in the anterior temporal white matter of 21 normal volunteers were evaluated. ATLAS laterality was evaluated in 21 TLE patients. Agreement of independent evaluations by two neuroradiologists was assessed using κ statistics. Differences in concordance between ATLAS laterality and clinically defined seizure focus laterality were analysed using McNemar's test with multiple comparisons. RESULTS Pre-amygdala high signals (PAHS) were detected in all volunteers only on 3D-DIR. Inter-evaluator agreement was moderate to almost perfect for each sequence. Correct diagnosis of seizure laterality was significantly more frequent on 3D-DIR than on any other sequences (P ≤ 0.031 for each evaluator). CONCLUSIONS The most sensitive sequence for detecting ATLAS laterality was 3D-DIR. ATLAS laterality on 3D-DIR can be a good indicator for determining seizure focus localization in TLE.
Collapse
|
10
|
|
11
|
Tsukiura T, Sekiguchi A, Yomogida Y, Nakagawa S, Shigemune Y, Kambara T, Akitsuki Y, Taki Y, Kawashima R. Effects of aging on hippocampal and anterior temporal activations during successful retrieval of memory for face-name associations. J Cogn Neurosci 2011; 23:200-13. [PMID: 20350057 DOI: 10.1162/jocn.2010.21476] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Memory for face-name associations is an important type of memory in our daily lives, and often deteriorates in older adults. Although difficulty retrieving face-name associations is often apparent in the elderly, there is little neuroscientific evidence of age-related decline in this memory. The current fMRI study investigated differences in brain activations between healthy young and older adults during the successful retrieval of people's names (N) and job titles (J) associated with faces. During encoding, participants viewed unfamiliar faces, each paired with a job title and name. During retrieval, each learned face was presented with two job titles or two names, and participants were required to choose the correct job title or name. Retrieval success activity (RSA) was identified by comparing retrieval-phase activity for hits versus misses in N and J, and the RSAs in each task were compared between young and older adults. The study yielded three main findings. First, the hippocampus showed significant RSA in both tasks of N and J, and the activity was greater for young compared to older subjects. Second, the left anterior temporal lobe (ATL) showed greater RSA in N than in J, but there was no age difference in the activity in this region. Third, functional connectivity between hippocampal and ATL activities in both retrieval tasks was higher for young than for older adults. Taken together, age-related differences in hippocampal activities and hippocampus-ATL connectivity could contribute to age-related decline in relational memory and to complaints of poor retrieval of people's names by older adults.
Collapse
Affiliation(s)
- Takashi Tsukiura
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Remote effects of hippocampal damage on default network connectivity in the human brain. J Neurol 2009; 256:2021-9. [PMID: 19603243 DOI: 10.1007/s00415-009-5233-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/19/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
In the healthy human brain the hippocampus is known to work in concert with a variety of cortical brain regions. It has recently been linked to the default network of the brain, with the precuneus being its core hub. Here we studied the remote effects of damage to the hippocampus on functional connectivity patterns of the precuneus. From 14 epilepsy patients with selective, unilateral hippocampal sclerosis and 8 healthy control subjects, we acquired functional MRI data during performance of an object-location memory task. We assessed functional connectivity of a functionally defined region in the precuneus, which showed the typical properties of the default network: significant task-related deactivation, which was reduced in patients compared to control subjects. In control subjects, a largely symmetrical pattern of functional coherence to the precuneus emerged, including canonical default network areas such as ventral medial prefrontal cortex, inferior parietal cortex, and the hippocampi. Assessment of group differences within the default network areas revealed reduced connectivity to the precuneus in ipsilesional middle temporal gyrus and hippocampus in left hippocampal sclerosis patients compared to controls. Furthermore, left hippocampal sclerosis patients showed lower connectivity than right hippocampal sclerosis patients in left middle temporal gyrus, ventral medial prefrontal cortex, and left amygdala. We report remote effects of unilateral hippocampal damage on functional connectivity between distant brain regions associated with the default network of the human brain. These preliminary results underline the impact of circumscribed pathology on functionally connected brain regions.
Collapse
|