1
|
Pivotto AP, de Souza Lima LB, Michelon A, Ferreira CZP, Gandra RF, Ayala TS, Menolli RA. Topical application of ozonated sunflower oil accelerates the healing of lesions of cutaneous leishmaniasis in mice under meglumine antimoniate treatment. Med Microbiol Immunol 2024; 213:4. [PMID: 38532203 DOI: 10.1007/s00430-024-00788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/24/2024] [Indexed: 03/28/2024]
Abstract
Besides being scarce, the drugs available for treating cutaneous leishmaniasis have many adverse effects. Ozone is an option to enhance the standard treatment due to the wound-healing activity reported in the literature. In this study, we evaluated the efficiency of ozonated sunflower oil as an adjuvant in treating cutaneous lesions caused by Leishmania amazonensis. BALB/c mice were infected with L. amazonensis, and after the lesions appeared, they were treated in four different schedules using the drug treatment with meglumine antimoniate (Glucantime®), with or without ozonated oil. After thirty days of treatment, the lesions' thickness and their parasitic burden, blood leukocytes, production of NO and cytokines from peritoneal macrophages and lymph node cells were analyzed. The group treated with ozonated oil plus meglumine antimoniate showed the best performance, improving the lesion significantly. The parasitic burden showed that ozonated oil enhanced the leishmanicidal activity of the treatment, eliminating the parasites in the lesion. Besides, a decrease in the TNF levels from peritoneal macrophages and blood leukocytes demonstrated an immunomodulatory action of ozone in the ozonated oil-treated animals compared to the untreated group. Thus, ozonated sunflower oil therapy has been shown as an adjuvant in treating Leishmania lesions since this treatment enhanced the leishmanicidal and wound healing effects of meglumine antimoniate.
Collapse
Affiliation(s)
- Ana Paula Pivotto
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, PR, Zip Code 85819-110, Brazil
| | - Lucas Bonatto de Souza Lima
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, PR, Zip Code 85819-110, Brazil
| | - Alexandra Michelon
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, PR, Zip Code 85819-110, Brazil
| | - Camilla Zottesso Pellon Ferreira
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, PR, Zip Code 85819-110, Brazil
| | - Rinaldo Ferreira Gandra
- Laboratory of Microbiology, Western Parana University Hospital, Western Parana State University, Cascavel, PR, Brazil
| | - Thaís Soprani Ayala
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, PR, Zip Code 85819-110, Brazil
| | - Rafael Andrade Menolli
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, PR, Zip Code 85819-110, Brazil.
| |
Collapse
|
2
|
de L Paula LA, Cândido ACBB, Santos MFC, Caffrey CR, Bastos JK, Ambrósio SR, Magalhães LG. Antiparasitic Properties of Propolis Extracts and Their Compounds. Chem Biodivers 2021; 18:e2100310. [PMID: 34231306 DOI: 10.1002/cbdv.202100310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Propolis is a bee product that has been used in medicine since ancient times. Although its anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory activities have been investigated, its anti-parasitic properties remain poorly explored, especially regarding helminths. This review surveys the results obtained with propolis around the world against human parasites. Regarding protozoa, studies carried out with the protozoa Trypanosoma spp. and Leishmania spp. have demonstrated promising results in vitro and in vivo. However, there are fewer studies for Plasmodium spp., the etiological agent of malaria and less so for helminths, particularly for Fasciola spp. and Schistosoma spp. Despite the favorable in vitro results with propolis, helminth assays need to be further investigated. However, propolis has shown itself to be an excellent natural product for parasitology, thus opening new paths and approaches in its activity against protozoa and helminths.
Collapse
Affiliation(s)
- Lucas A de L Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Cândido
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Mario F C Santos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14.040-903, Ribeirão Preto, SP, Brazil
| | - Sérgio R Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira 201, CEP 14404-600, Franca, SP, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Asfaram S, Fakhar M, Keighobadi M, Akhtari J. Promising Anti-Protozoan Activities of Propolis (Bee Glue) as Natural Product: A Review. Acta Parasitol 2021; 66:1-12. [PMID: 32691360 DOI: 10.1007/s11686-020-00254-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Propolis (bee glue) is a resinous mixture of different plant exudates that possesses a wide range of biological and antimicrobial activities and has been used as a food supplement and in complementary medicine for centuries. Some researchers have proposed that propolis could be a potential curative compound against microbial agents such as protozoan parasitic infections by different and occasionally unknown mechanisms due to the immunoregulatory function and antioxidant capacity of this natural product. METHODS In this review, we concentrate on in vitro and in vivo anti-protozoan activities of propolis extracts/fractions in the published literature. RESULTS In Leishmania, propolis inhibits the proliferation of promastigotes and produces an anti-inflammatory effect via the inhibition of nitric oxide (NO) production. In addition, it increases macrophage activation, TLR-2, TNF-α, IL-4, IL-17 production, and downregulation of IL-12. In Plasmodium and Trypanosoma, propolis inhibits the parasitemia, improving anemia and increasing the IFN-γ, TNF-α, and GM-CSF cytokines levels, most likely due to its strong immunomodulatory activity. Moreover, propolis extract arrests proliferation of T. cruzi, because it has aromatic acids and flavonoids. In toxoplasmosis, propolis increases the specific IgM and IgG titers via decreasing the serum IFN-γ, IL-1, and IL-6 cytokines levels in the rats infected with T. gondii. In Cryptosporidium and Giardia, it decreases oocysts shedding due to phytochemical constituents, particularly phenolic compounds, and increases the number of goblet cells. Propolis inhibits the growth of Blastocystis, possibly by apoptotic mechanisms like metronidazole. Unfortunately, the mechanism action of propolis' anti-Trichomonas and anti-Acanthamoeba is not well-known yet. CONCLUSION Reviewing the related literature could highlight promising antimicrobial activities of propolis against intracellular and extracellular protozoan parasites; this could shed light on the exploration of more effective drugs for the treatment of protozoan parasitic infections in the near future.
Collapse
Affiliation(s)
- Shabnam Asfaram
- Research Center for Zoonoses, Parasitic and Microbial Diseases, Ardabil University of Medical Sciences, Ardabil, Iran
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Masoud Keighobadi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Ebiloma GU, Ichoron N, Siheri W, Watson DG, Igoli JO, De Koning HP. The Strong Anti-Kinetoplastid Properties of Bee Propolis: Composition and Identification of the Active Agents and Their Biochemical Targets. Molecules 2020; 25:E5155. [PMID: 33167520 PMCID: PMC7663965 DOI: 10.3390/molecules25215155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The kinetoplastids are protozoa characterized by the presence of a distinctive organelle, called the kinetoplast, which contains a large amount of DNA (kinetoplast DNA (kDNA)) inside their single mitochondrion. Kinetoplastids of medical and veterinary importance include Trypanosoma spp. (the causative agents of human and animal African Trypanosomiasis and of Chagas disease) and Leishmania spp. (the causative agents of the various forms of leishmaniasis). These neglected diseases affect millions of people across the globe, but drug treatment is hampered by the challenges of toxicity and drug resistance, among others. Propolis (a natural product made by bees) and compounds isolated from it are now being investigated as novel treatments of kinetoplastid infections. The anti-kinetoplastid efficacy of propolis is probably a consequence of its reported activity against kinetoplastid parasites of bees. This article presents a review of the reported anti-kinetoplastid potential of propolis, highlighting its anti-kinetoplastid activity in vitro and in vivo regardless of geographical origin. The mode of action of propolis depends on the organism it is acting on and includes growth inhibition, immunomodulation, macrophage activation, perturbation of the cell membrane architecture, phospholipid disturbances, and mitochondrial targets. This gives ample scope for further investigations toward the rational development of sustainable anti-kinetoplastid drugs.
Collapse
Affiliation(s)
- Godwin U. Ebiloma
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Nahandoo Ichoron
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
| | - Weam Siheri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - John O. Igoli
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria; (N.I.) (J.O.I.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; (W.S.), (D.G.W.)
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
5
|
Aqueous ozone therapy improves the standard treatment of leishmaniasis lesions in animals leading to local and systemic alterations. Parasitol Res 2020; 119:4243-4253. [PMID: 33048207 DOI: 10.1007/s00436-020-06925-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
The current treatment of leishmaniasis presents some problems, such as cell toxicity, parenteral route, and time of treatment. Ozone emerges as an option to accelerate the standard treatment due to the immunomodulatory, antioxidant, and wound healing activity reported in the literature. This work aimed to evaluate the efficacy of aqueous ozone as an adjuvant to the standard treatment of cutaneous lesions caused by Leishmania amazonensis in an experimental model. For in vivo experiments, mice were randomly distributed in 6 groups, which were infected with L. amazonensis and treated in five different schedules using the standard treatment with Glucantime® with or without aqueous ozone. After the last day of treatment, the animals were euthanized and were analyzed: the thickness of lesions; collagen deposition, the parasitic burden of the lesions; blood leukocyte number; NO; and cytokine dosages and arginase activity from peritoneal macrophages. All treated groups showed a decrease in the lesion, but with a significative deposition of collagen in lesions with local ozone treatment. The parasite burden showed that ozone enhanced the leishmanicidal activity of the reference drug. The reduction of NO production and blood leukocyte count and increases in the arginase activity showed an immunomodulatory activity of ozone in the treated animals. Thus, ozone therapy has been shown to work as an adjuvant in the treatment of Leishmania lesions, enhancing leishmanicidal and wound healing activity of standard treatment.
Collapse
|
6
|
Devequi-Nunes D, Machado BAS, Barreto GDA, Rebouças Silva J, da Silva DF, da Rocha JLC, Brandão HN, Borges VM, Umsza-Guez MA. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS One 2018; 13:e0207676. [PMID: 30513100 PMCID: PMC6279037 DOI: 10.1371/journal.pone.0207676] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/05/2018] [Indexed: 12/03/2022] Open
Abstract
Propolis is a natural product with many demonstrated biological activities and propolis extract has been used in the food, pharmaceutical and cosmetics industries. Different works have showed the variations in the chemical composition, and consequently, on the biological activity of the propolis that are associated with its type and geographic origin. Due to this study evaluated propolis extracts obtained through supercritical extraction and ethanolic extraction (conventional) in three samples of different types of propolis (red, green and brown), collected from different regions in Brazil (state of Bahia). Analyses were performed to determine the humidity, water activity, the content of total ash, proteins, lipids and fiber in raw propolis samples. The content of phenolic compounds, flavonoids, in vitro antioxidant activity (DPPH), catechin, ferulic acid and luteolin and antimicrobial activity against two bacteria (Staphylococcus aureus and Escherichia coli) were determined for all extracts. For the green and red ethanolic extracts the anti-leishmanicidal potential was also evaluated. The physicochemical profiles showed agreement in relation to the literature. The results identified significant differences among the extracts (p>0.05), which are in conformity with their extraction method, as well as with type and botanical origin of the samples. The extraction with supercritical fluid was not efficient to obtain extracts with the highest contents of antioxidants compounds, when compared with the ethanolic extracts. The best results were shown for the extracts obtained through the conventional extraction method (ethanolic) indicating a higher selectivity for the extraction of antioxidants compounds. The red variety showed the largest biological potential, which included the content of antioxidants compounds. The results found in this study confirm the influence of the type of the raw material on the composition and characteristics of the extracts. The parameters analysis were important to characterize and evaluate the quality of the different Brazilian propolis extracts based on the increased use of propolis by the natural products industry.
Collapse
Affiliation(s)
- Danielle Devequi-Nunes
- SENAI CIMATEC University Center, Health Institute of Technologies (ITS CIMATEC), National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
- Federal University of Bahia, Salvador, Bahia, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI CIMATEC University Center, Health Institute of Technologies (ITS CIMATEC), National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
- * E-mail:
| | - Gabriele de Abreu Barreto
- SENAI CIMATEC University Center, Health Institute of Technologies (ITS CIMATEC), National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
| | - Jéssica Rebouças Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
- Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | - Hugo Neves Brandão
- Estadual University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Valéria M. Borges
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
- Federal University of Bahia, Salvador, Bahia, Brazil
| | | |
Collapse
|
7
|
da Silva SS, Mizokami SS, Fanti JR, Costa IN, Bordignon J, Felipe I, Pavanelli WR, Verri WA, Conchon Costa I. Glucantime reduces mechanical hyperalgesia in cutaneous leishmaniasis and complete Freund's adjuvant models of chronic inflammatory pain. J Pharm Pharmacol 2018. [PMID: 29532470 DOI: 10.1111/jphp.12896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To evaluate the analgesic effect of Glucantime (antimoniate N-methylglucamine) in Leishmania amazonensis infection and complete Freund's adjuvant (CFA), chronic paw inflammation model, in BALB/c mice. METHODS Two models of chronic inflammatory pain in BALB/c mice paw were used: infection with L. amazonensis and CFA stimulation. Both animals models received daily treatment with Glucantime (10 mg/kg, i.p.) and during the treatment was measured the mechanical hyperalgesia with electronic version of von Frey filaments. After the treatment, the paw skin sample was collected for analysis of myeloperoxidase (MPO) and N-acetyl-β-glucosaminidase (NAG) activity, and IL-1β, TNF-α, IL-6, IFN-γ and IL-10 cytokines production by ELISA. KEY FINDINGS Leishmania amazonensis-induced chronic inflammation with significant increase in mechanical hyperalgesia, MPO and NAG activity, and IL-1β, TNF-α and IL-6 production in the paw skin. Glucantime (10 mg/kg, i.p.) inhibited L. amazonensis-induced mechanical hyperalgesia and IL-1β and IL-6 cytokines productions. In chronic inflammatory model induced by CFA, Glucantime treatment during 7 days inhibited CFA-induced mechanical hyperalgesia, MPO and NAG activity, and IL-1β, TNF-α, IL-6 and IFN-γ production as well as increased IL-10 production. CONCLUSIONS Our data demonstrated that Glucantime reduced the chronic inflammatory pain induced by L. amazonensis and CFA stimuli by inhibiting the hyperalgesic cytokines production.
Collapse
Affiliation(s)
- Suelen S da Silva
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Sandra S Mizokami
- Laboratório de dor e Inflamação, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Jacqueline R Fanti
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Idessania N Costa
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz/PR), Curitiba, Brazil
| | - Ionice Felipe
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Wander R Pavanelli
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Waldiceu A Verri
- Laboratório de dor e Inflamação, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Ivete Conchon Costa
- Laboratório de Parasitologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| |
Collapse
|
8
|
Rufatto LC, dos Santos DA, Marinho F, Henriques JAP, Roesch Ely M, Moura S. Red propolis: Chemical composition and pharmacological activity. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Parasite Killing of Leishmania (V) braziliensis by Standardized Propolis Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6067172. [PMID: 28690662 PMCID: PMC5485350 DOI: 10.1155/2017/6067172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022]
Abstract
Treatments based on antimonials to cutaneous leishmaniasis (CL) entail a range of toxic side effects. Propolis, a natural compound widely used in traditional medical applications, exhibits a range of biological effects, including activity against infectious agents. The aim of this study was to test the potential leishmanicidal effects of different propolis extracts against Leishmania (Viannia) braziliensis promastigotes and intracellular amastigotes in vitro. Stationary-phase L. (V) braziliensis promastigotes were incubated with medium alone or treated with dry, alcoholic, or glycolic propolis extract (10, 50, or 100 μg/mL) for 96 h. Our data showed that all extracts exhibited a dose-dependent effect on the viability of L. (V) braziliensis promastigotes, while controlling the parasite burden inside infected macrophages. Dry propolis extract significantly modified the inflammatory profile of murine macrophages by downmodulating TGF-β and IL-10 production, while upmodulating TNF-α. All three types of propolis extract were found to reduce nitric oxide and superoxide levels in activated L. braziliensis-infected macrophages. Altogether, our results showed that propolis extracts exhibited a leishmanicidal effect against both stages of L. (V) braziliensis. The low cell toxicity and efficient microbicidal effect of alcoholic or glycolic propolis extracts make them candidates to an additive treatment for cutaneous leishmaniasis.
Collapse
|
10
|
dos Santos Thomazelli APF, Tomiotto-Pellissier F, da Silva SS, Panis C, Orsini TM, Cataneo AHD, Miranda-Sapla MM, Custódio LA, Tatakihara VLH, Bordignon J, Silveira GF, Sforcin JM, Pavanelli WR, Conchon-Costa I. Brazilian propolis promotes immunomodulation on human cells from American Tegumentar Leishmaniasis patients and healthy donors infected with L. braziliensis. Cell Immunol 2017; 311:22-27. [DOI: 10.1016/j.cellimm.2016.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 01/25/2023]
|
11
|
da Silva SS, Mizokami SS, Fanti JR, Miranda MM, Kawakami NY, Teixeira FH, Araújo EJA, Panis C, Watanabe MAE, Sforcin JM, Pavanelli WR, Verri WA, Felipe I, Conchon-Costa I. Propolis reduces Leishmania amazonensis-induced inflammation in the liver of BALB/c mice. Parasitol Res 2015; 115:1557-66. [PMID: 26711452 DOI: 10.1007/s00436-015-4890-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
Experimental models of mouse paw infection with L. amazonensis show an induction of a strong inflammatory response in the skin, and parasitic migration may occur to secondary organs with consequent tissue injury. There are few studies focusing on the resolution of damage in secondary organs caused by Leishmania species-related cutaneous leishmaniasis. We investigated the propolis treatment effect on liver inflammation induced by Leishmania amazonensis infection in the mouse paw. BALB/c mice were infected in the hind paw with L. amazonensis (10(7)) promastigote forms. After 15 days, animals were treated daily with propolis (5 mg/kg), Glucantime (10 mg/kg), or with propolis plus Glucantime combined. After 60 days, mice were euthanized and livers were collected for inflammatory process analysis. Liver microscopic analysis showed that propolis reduced the inflammatory process compared to untreated infected control. There was a decrease of liver myeloperoxidase and N-acetyl-β-glucosaminidase activity levels, collagen fiber deposition, pro-inflammatory cytokine production, and plasma aspartate transaminase and alanine transaminase levels. Furthermore, propolis treatment enhanced anti-inflammatory cytokine levels and reversed hepatosplenomegaly. Our data demonstrated that daily low doses of Brazilian propolis reduced the secondary chronic inflammatory process in the liver caused by L. amazonensis subcutaneous infection in a susceptible mice strain.
Collapse
Affiliation(s)
- Suelen S da Silva
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil.
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Jacqueline R Fanti
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Milena M Miranda
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Natalia Y Kawakami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Fernanda Humel Teixeira
- Departamento de Histologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Eduardo J A Araújo
- Departamento de Histologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Carolina Panis
- Laboratório de Mediadores Inflamatórios, Universidade do Oeste do Paraná, UNIOESTE, Francisco Beltrão, 85605-010, Paraná, Brazil
| | - Maria A E Watanabe
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - José M Sforcin
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, 18618-970, São Paulo, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Ionice Felipe
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Paraná, Brazil
| |
Collapse
|
12
|
Araujo AP, Giorgio S. Immunohistochemical evidence of stress and inflammatory markers in mouse models of cutaneous leishmaniosis. Arch Dermatol Res 2015; 307:671-82. [PMID: 25896942 DOI: 10.1007/s00403-015-1564-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/06/2015] [Accepted: 04/11/2015] [Indexed: 01/20/2023]
Abstract
Leishmanioses are chronic parasitic diseases and host responses are associated with pro- or anti-inflammatory cytokines involved, respectively, in the control or exacerbation of infection. The relevance of other inflammatory mediators and stress markers has not been widely studied and there is a need to search for biomarkers to leishmaniasis. In this work, the stress and inflammatory molecules p38 mitogen-activated protein kinase, cyclooxygenase-2, migration inhibitory factor, macrophage inflammatory protein 2, heat shock protein 70 kDa, vascular endothelial factor (VEGF), hypoxia-inducible factors (HIF-1α and HIF-2α), heme oxygenase and galectin-3 expression were assessed immunohistochemically in self-controlled lesions in C57BL/6 mice and severe lesions in Balb/c mice infected with Leishmania amazonensis. The results indicated that the majority of molecules were expressed in the cutaneous lesions of both C57BL/6 and Balb/c mice during various phases of infection, suggesting no obvious correlation between the stress and inflammatory molecule expression and the control/exacerbation of leishmanial lesions. However, the cytokine VEGF was only detected in C57BL/6 footpad lesions and small lesions in Balb/c mice treated with antimonial pentavalent. These findings suggest that VEGF expression could be a predictive factor for murine leishmanial control, a hypothesis that should be tested in human leishmaniosis.
Collapse
Affiliation(s)
- Alexandra Paiva Araujo
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, São Paulo, 13083-970, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
13
|
Brazilian propolis antileishmanial and immunomodulatory effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:673058. [PMID: 23762152 PMCID: PMC3670560 DOI: 10.1155/2013/673058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/12/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Abstract
The antileishmanial and immunomodulatory effects of propolis collected in Botucatu, São Paulo State, Brazil, were evaluated in Leishmania (Viannia) braziliensis experimental infection. The antileishmanial effect of propolis on promastigote forms was verified by reducing growth and by promoting morphologic alterations observed by scanning electron microscopy. In in vitro immunomodulatory assays, macrophages were pretreated with propolis and then infected with L. (V.) braziliensis. In vivo, supernatants from liver cells and peritoneal exudate of BALB/c mice pretreated with propolis and infected with Leishmania (107/mL promastigotes) were collected, and TNF-α and IL-12 were measured by ELISA. Macrophages incubated with propolis showed a significant increase in interiorization and further killing of parasites. An increased TNF-α production was seen in mice pretreated with propolis, whereas IL-12 was downregulated during the infection. In conclusion, Brazilian propolis showed a direct action on the parasite and displayed immunomodulatory effects on murine macrophages, even though the parasite has been reported to affect the activation pathways of the cell. The observed effects could be associated with the presence of phenolic compounds (flavonoids, aromatic acids, and benzopyranes), di- and triterpenes, and essential oils found in our propolis sample.
Collapse
|